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Abstract

Contextual bandits are a rich model for se-
quential decision making given side informa-
tion, with important applications, e.g., in rec-
ommender systems. We propose novel algo-
rithms for contextual bandits harnessing neu-
ral networks to approximate the unknown re-
ward function. We resolve the open prob-
lem of proving sublinear regret bounds in this
setting for general context sequences, con-
sidering both fully-connected and convolu-
tional networks. To this end, we first an-
alyze NTK-UCB, a kernelized bandit op-
timization algorithm employing the Neural
Tangent Kernel (NTK), and bound its regret
in terms of the NTK maximum information
gain γT , a complexity parameter capturing
the difficulty of learning. Our bounds on γT
for the NTK may be of independent interest.
We then introduce our neural network based
algorithm NN-UCB, and show that its re-
gret closely tracks that of NTK-UCB. Un-
der broad non-parametric assumptions about
the reward function, our approach converges
to the optimal policy at a Õ(T−1/2d) rate,
where d is the dimension of the context.

1 Introduction

Contextual bandits are a model for sequential deci-
sion making based on noisy observations. At every
step, the agent is presented with a context vector and
picks an action, based on which it receives a noisy re-
ward. Learning about the reward function with as few
samples (exploration), while simultaneously maximiz-
ing its cumulative payoff (exploitation), are the agent’s
two competing objectives. Our goal is to develop an
algorithm whose action selection policy attains sublin-
ear regret, which implies convergence to an optimal
policy as the number of observations grows. A cele-
brated approach for regret minimization is the opti-
mism principle: establishing upper confidence bounds

(UCB) on the reward, and always selecting a plausibly
optimal action. Prior work has developed UCB-based
contextual bandit approaches, such as linear or ker-
nelized bandits, for increasingly rich models of reward
functions [1, 3, 14, 42]. There are also several recent
attempts to harness deep neural networks for contex-
tual bandit tasks. While these perform well in practice
[18, 33, 47, 48, 49], there is a lack of theoretical under-
standing of neural network-based bandit approaches.

We introduce two optimistic contextual bandit algo-
rithms that employ neural networks to estimate the
reward and its uncertainty, NN-UCB and its convolu-
tional variant CNN-UCB. Under the assumption that
the unknown reward function f resides in a Repro-
ducing Kernel Hilbert Space (RKHS) with a bounded
norm, we prove that both algorithms converge to the
optimal policy, if the networks are sufficiently wide,
or have many channels. To prove this bound, we
take a two-step approach. We begin by bounding the
regret for NTK-UCB, which simply estimates mean
and variance of the reward via Gaussian process (GP)
inference. Here, the covariance function of the GP
is set to kNN, the Neural Tangent Kernel associated
with the given architecture. We then exploit the fact
that neural networks trained with gradient descent
approximate the posterior mean of this GP [2], and
generalize our analysis of NTK-UCB to bound NN-
UCB’s regret. By drawing a connection between fully-
connected and 2-layer convolutional networks, we ex-
tend our analysis to include CNTK-UCB and CNN-
UCB, the convolutional variants of the algorithms. A
key contribution of our work is bounding the NTK
maximum information gain, a parameter that mea-
sures the difficulty of learning about a reward func-
tion when it is a sample from a GP(0, kNN). This
result may be of independent interest, as many re-
lated sequential decision making approaches rely on
this quantity.

Related Work This work is inspired by Zhou et al.
[49] who introduce the idea of training a neural net-
work within a UCB style algorithm. They analyze
Neural-UCB, which bears many similarities to NN-
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UCB. Relevant treatments of the regret are given by
Gu et al. [18], Yang et al. [46] and Zhang et al. [48]
for other neural contextual bandit algorithms. How-
ever, as discussed in Section 4, these approaches do
not generally guarantee sublinear regret, unless fur-
ther restrictive assumptions about the context are
made. In addition, there is a large literature on kernel-
ized contextual bandits. Closely related to our work
are Krause and Ong [25] and Valko et al. [45] who
provide regret bounds for kernelized UCB methods,
with Bayesian and Frequentist perspectives respec-
tively. Srinivas et al. [42] are the first to tackle the
kernelized bandit problem with a UCB based method.
Many have then proposed variants of this algorithm, or
improved its convergence guarantees under a variety of
settings [5, 8, 9, 14, 16, 22, 29, 36]. The majority of the
bounds in this field are expressed in terms of the max-
imum information gain, and Srinivas et al. [42] estab-
lish a priori bounds on this parameter. Their analysis
only holds for smooth kernel classes, but has since been
extended to cover more complex kernels [20, 37, 41, 44].
In particular, Vakili et al. [44] introduce a technique
that applies to smooth Mercer kernels, which we use
as a basis for our analysis of the NTK’s maximum in-
formation gain. In parallel to UCB methods, online
decision making via Thompson Sampling is also ex-
tensively studied following Russo and Van Roy [34].

Our work further builds on the literature linking wide
neural networks and Neural Tangent Kernels. Cao
and Gu [10] provide important results on training wide
fully-connected networks with gradient descent, which
we extend to 2-layer convolutional neural networks
(CNNs). Through a non-asymptotic bound, Arora
et al. [2] approximate a trained neural network by the
posterior mean of a GP with NTK covariance function.
Bietti and Bach [7] study the Mercer decomposition of
the NTK and calculate the decay rate of its eigen-
values, which plays an integral role in our analysis.
Little is known about the properties of the Convolu-
tional Neural Tangent Kernel (CNTK), and the ex-
tent to which it can be used for approximating trained
CNNs. Bietti [6] and Mei et al. [28] are among the
first to study this kernel by investigating its invari-
ance towards certain groups of transformations, which
we draw inspiration from in this work.

Contributions Our main contributions are:

• To our knowledge, we are the first to give an
explicit sublinear regret bound for a neural
network based UCB algorithm. We show that
NN-UCB’s cumulative regret after a total of T
steps is Õ(T (2d−1)/2d), for any arbitrary context
sequence on the d-dimensional hyper-sphere.
(Theorem 4.1)

• We introduce CNN-UCB, the first convolutional
contextual bandit algorithm and prove that
when the number of channels is large enough, it
converges to the optimal policy at the same rate
as NN-UCB. (Theorem 5.4)

The Õ notation omits the terms of order log T or
slower. Along the way, we present intermediate results
that may be of independent interest. In Theorem 3.1
we prove that γT , the maximum information gain for
the NTK after T observations, is Õ(T (d−1)/d). We in-
troduce and analyze NTK-UCB and CNTK-UCB,
two kernelized methods with sublinear regret (Theo-
rems 3.2 & 3.3) that can be used in practice or as a the-
oretical tool. Theorems 3.1 through 3.3 may provide
an avenue for extending other kernelized algorithms to
neural network based methods.

2 Problem Statement

Contextual bandits are a model of sequential decision
making over T rounds, where, at step t, the learner
observes a context matrix zt, and picks an action at
from A, the finite set of actions. The context matrix
consists of a set of vectors, one for each action, i.e.,
zt = (zt,1, · · · , zt,|A|) ∈ Rd×|A|. The learner then re-
ceives a noisy reward yt = f(xt) + εt. Here, the input
to the reward function is the context vector associated
with the chosen action, i.e., xt = ztat ∈ Rd, where at
is represented as a one-hot vector of length |A|. Then
the reward function is defined as f : X → R, where
X ⊆ Rd denotes the input space. Observation noise
is modeled with εt, an i.i.d. sample from a zero-mean
sub-Gaussian distribution with variance proxy σ2 > 0.
The goal is to choose actions that maximize the cu-
mulative reward over T time steps. This is analogous
to minimizing the cumulative regret, the difference
between the maximum possible (context-dependent)
reward and the actual reward received, RT =∑T
t=1 f(x∗t )−f(xt), where xt is the learner’s pick and

x∗t is the maximizer of the reward function at step t

x∗t = arg max
x=zta,a∈A

f(x).

The learner’s goal is to select actions such that
RT /T → 0 as T →∞. This property implies that the
learner’s policy converges to the optimal policy.

2.1 Assumptions

Our regret bounds require some assumptions on the
reward function f and the input space X . Through-
out this work, we assume that A is finite and X is
a subset of Sd−1 the d-dimensional unit hyper-sphere.
We consider two sets of assumptions on f ,
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• Frequentist Setting: We assume that f is an ar-
bitrary function residing in the RKHS that is re-
producing for the NTK, HkNN

, and has a bounded
kernel norm, ‖f‖kNN

≤ B.

• Bayesian Setting: We assume that f is a sample
from a zero-mean Gaussian Process, that uses the
NTK as its covariance function, GP(0, kNN).

These assumptions are broad, non-parametric and im-
ply that f is continuous on the hyper-sphere. Both
the Bayesian and the Frequentist setting impose cer-
tain smoothness properties on f via kNN. Technically,
the function class addressed by each assumption has
an empty intersection with the other. Appendix B.1
provides more insight into the connection between the
two assumptions.

2.2 The Neural Tangent Kernel

We review important properties of the NTK as
relied upon in this work. Training very wide neural
networks has similarities to estimation with kernel
methods using the NTK. For now, we will focus on
fully-connected feed-forward ReLU networks and
their corresponding NTK. In Section 5, we extend
our result to networks with one convolutional layer.
Let f(x;θ) : Rd → R be a fully-connected network,
with L hidden layers of equal width m, and ReLU
activations, recursively defined as follows,

f (1)(x) = W (1)x,

f (l)(x) =

√
2

m
W (l)σrelu

(
f (l−1)(x)

)
∈ Rm, 1 < l ≤ L

f(x;θ) =
√

2W (L+1)σrelu

(
f (L)(x)

)
.

The weights W (i) are initialized to random ma-
trices with standard normal i.i.d. entries, and θ =
(W (i))i≤L+1. Let g(x;θ) = ∇θf(x;θ) be the gradient
of f . Assume that given a fixed dataset, the network is
trained with gradient descent using an infinitesimally
small learning rate. For networks with large width m,
training causes little change in the parameters and,
respectively, the gradient vector. For any x, x′ ∈ X ,
and as m tends to infinity, a limiting behavior
emerges: 〈g(x;θ), g(x′;θ)〉/m, the inner product
of the gradients, remains constant during training
and converges to kNN(x;x′), a deterministic kernel
function [2, 19]. This kernel satisfies the conditions of
Mercer’s Theorem over Sd−1 with the uniform measure
[11] and has the following Mercer decomposition,

kNN(x,x′) =

∞∑
k=0

µk

N(d,k)∑
j=1

Yj,k(x)Yj,k(x′), (1)

where Yj,k is the j-th spherical harmonic polynomial
of degree k, and N(d, k) denotes the algebraic multi-
plicity of µk. In other words, each µk corresponds to a
N(d, k) dimensional eigenspace, where N(d, k) grows
with kd−2. Without loss of generality, assume that
the distinct eigenvalues µk are in descending order.
Bietti and Bach [7] show that there exists an absolute
constant C(d, L) such that

µk ' C(d, L)k−d. (2)

Taking the algebraic multiplicity into account, we
obtain that the decay rate for the complete spectrum
of eigenvalues is of polynomial rate k−1−1/(d−1). This
decay is slower than that of the kernels commonly
used for kernel methods. The eigen-decay for the
squared exponential kernel is O(exp(−k1/d)) [4], and
Matérn kernels with smoothness ν > 1/2 have a
O(k−1−2ν/d) decay rate [35]. The RKHS associated
with kNN is then given by

HkNN
=
{
f : f =

∑
k≥0

N(d,k)∑
j=1

βj,kYj,k,

∑
k≥0

N(d,k)∑
j=1

β2
j,k

µk
<∞

}
.

(3)

Equation 3 explains how the eigen-decay of k controls
the complexity of Hk. Only functions whose coef-
ficients βj,k decay at a faster rate than the kernel’s
eigenvalues are contained in the RKHS. Therefore, if
the eigenvalues of k decay rapidly, Hk is more limited.
The slow decay of the NTK’s eigenvalues implies that
the assumptions on the reward function given in Sec-
tion 2.1 are less restrictive compared to what is often
studied in the kernelized contextual bandit literature.

3 Warm-up: NTK-UCB – Kernelized
Contextual Bandits with the NTK

Our first step will be to analyze kernelized bandit
algorithms that employ the NTK as the kernel. In
particular, we focus on the Upper Confidence Bound
(UCB) exploration policy [42]. Kernelized bandits can
be interpreted as modeling the reward function f via
a Bayesian prior, namely a Gaussian process GP(0, k)
with covariance function given by k. At each step t,
we calculate the posterior mean and variance µt−1(·)
and σt−1(·), using the samples observed at previous
steps. For i.i.d. N (0, σ2) noise, the posterior GP has
a closed form expression,

µt−1(x) = kTt−1(x)(Kt−1 + σ2I)−1yt−1

σ2
t−1(x) = k(x,x)− kTt−1(x)(Kt−1 + σ2I)−1kt−1(x)

(4)
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where yt−1 = [yi]i<t is the vector of received rewards,
kt−1(x) = [k(x,xi)]i<t, and Kt−1 = [k(xi,xj)]i,j<t
is the kernel matrix. We then select the action by
maximizing the UCB,

xt = arg max
x=zta,a∈A

µt−1(x) +
√
βtσt−1(x). (5)

The acquisition function balances exploring uncertain
actions and exploiting the gained information via pa-
rameter βt which will be detailed later. Our method
NTK-UCB, adopts the UCB approach, and uses kNN

as the covariance kernel function of the GP for calcu-
lating the posteriors in Equation 4.

3.1 Information Gain

The UCB policy seeks to learn about f quickly, while
picking actions that also give large rewards. The
speed at which we learn about f is quantified by
the maximum information gain. Assume that for a
sequence of inputs XT = (x1, · · · ,xT ), the learner
observes noisy rewards yT = (y1, . . . , yT ), and let
fT = (f(x1), . . . , f(xT )) be the corresponding true
rewards. Then the information gain is defined as the
mutual information between these random vectors,
I(yT ;fT ) := H(yT ) − H(yT |fT ), where H denotes
the entropy. Assuming the GP prior f ∼ GP(0, kNN),
and in presence of i.i.d. Gaussian noise,

I(yT ;fT ) =
1

2
log det(I + σ−2KT )

with the kernel matrix KT = [kNN(xi,xj)]i,j≤T .
Following Srinivas et al. [42], we will express our
regret bounds in terms of the information gain. The
information gain depends on the sequence of points
observed. To obtain bounds for arbitrary context
sequences, we work with the maximum information
gain defined as γT := maxXT I(yT ;fT ). By bounding
I(yT ;fT ) with γT , we obtain regret bounds that are
independent of the input sequence.

Many regret bounds in this literature, including ours,
are of the form Õ(

√
TγT ) or Õ(

√
TγT ). For such a

bound not to be vacuous, i.e., for it to guarantee con-
vergence to an optimal policy, γT must grow strictly
sub-linearly with T . Our first main result is an a priori
bound on γT for Neural Tangent Kernels correspond-
ing to fully-connected networks of depth L.

Theorem 3.1. Suppose the observation noise
is i.i.d., zero-mean and a Gaussian of variance
σ2 > 0, and the input domain X ⊂ Sd−1. Then
the maximum information gain associated with the
NTK of a fully-connected ReLU network is bounded by

γT = O
((

C(d,L)T

log(1+ T
σ2

)

) d−1
d

log

(
1 + T

σ2

(
C(d,L)T

log(1+ T
σ2

)

) d−1
d

))

The parameter γT arises not only in the bandit set-
ting, but in a broad range of related sequential decision
making tasks [5, 21, 24, 23, 39, 40, 43]. Theorem 3.1
might therefore be of independent interest and facil-
itate the extension of other kernelized algorithms to
neural network based methods. When restricted to
Sd−1, the growth rate of γT for the NTK matches the
rate for a Matérn kernel with smoothness coefficient of
ν = 1/2, since both kernels have the same rate of eigen-
decay [12]. Srinivas et al. [42] bound γT for smooth
Matérn kernels with ν ≥ 1, and Vakili et al. [44] extend
this result to ν > 1/2. From this perspective, Theo-
rem 3.1 pushes the previous literature one step further
by bounding the information gain of a kernel with the
same eigen-decay as a Matérn kernel with ν = 1/2.1

Proof Idea Beyond classical analyses of γT , addi-
tional challenges arise when working with the NTK,
since it does not have the smoothness properties re-
quired in prior works. As a consequence, we directly
use the Mercer decomposition of the NTK (Eq. 1) and
break it into two terms, one corresponding to a kernel
with a finite-dimensional feature map, and a tail sum.
We separately bound the information gain caused by
each term. From the Matérn perspective, we are able
to extend the previous results, in particular due to
our treatment of the Mercer decomposition tail sum.
An integral element of our approach is a fine-grained
analysis of the NTK’s eigenspectrum over the hyper-
sphere, given by Bietti and Bach [7]. The complete
proof is given in Appendix C.1.

3.2 Regret Bounds

We now proceed with bounding the regret for NTK-
UCB, under both Bayesian and Frequentist assump-
tions, as explained in Section 2.1. Following Krause
and Ong [25], and making adjustments where needed,
we obtain a bound for the Bayesian setting.

Theorem 3.2. Let δ ∈ (0, 1) and suppose f is sam-
pled from GP(0, kNN). Samples of f are observed with
zero-mean Gaussian noise of variance σ2, and the ex-
ploration parameter is set to βt = 2 log(|A|t2π2/6δ).
Then with probability greater than 1 − δ, the regret of
NTK-UCB satisfies

RT ≤ C
√
TβT γT

for any T ≥ 1, where C :=
√

8σ−2/ log(1 + σ−2).

Crucially, this bound holds for any sequence of ob-
served contexts, since γT is deterministic and only de-

1Under the assumption that f ∼ GP(0, k) with the co-
variance function a Matérn ν = 1/2, Shekhar et al. [41]
give a dimension-type regret bound for a tree-based bandit
algorithm. Their analysis however, is not in terms of the
information gain, due to the structure of this algorithm.
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pends on σ, T , the kernel function kNN, and the input
domain X . A key ingredient in the proofs of regret
bounds, including Theorem 3.2, is a concentration in-
equality of the form

|f(xt)− µt−1(xt)| ≤
√
βtσt−1(xt), (6)

holding with high probability for every xt and t.
This inequality holds naturally under the GP assump-
tion, since f(x) is obtained directly from Bayesian
inference. Setting βt to grow with log t satisfies the
inequality and results in a Õ(

√
TγT ) regret bound.

However, additional challenges arise under the RKHS
assumption. For Equation 6 to hold in this set-
ting, we need βt to grow with γt log t. The regret
would then be Õ(

√
TγT ) [14]. For the NTK-UCB, γT

is Õ(T (d−1)/d), and the γT
√
T rate would no longer

imply convergence to the optimal policy for d ≥ 2.
To overcome this technical issue, we analyze a vari-
ant of our algorithm – called the Sup variant – that
has been successfully applied in the kernelized ban-
dit literature [3, 15, 27, 45]. A detailed description of
the SupNTK-UCB, along with its pseudo-code and
properties is given in Appendix C.3. Here we give a
high-level overview of the Sup variant, and how it re-
solves the large βt problem. This variant combines
NTK-UCB policy with Random Exploration (RE).
At NTK-UCB steps, the UCB is calculated only us-
ing the context-reward pairs observed in the previous
RE steps. Moreover, the rewards received during the
RE steps are statistically independent conditioned on
the input for those steps. Together with other proper-
ties, this allows a choice of βt that grows with log T .
We obtain the following bound:

Theorem 3.3. Let δ ∈ [0, 1]. Suppose f lies in
the RKHS of kNN, with ||f ||kNN

≤ B. Samples of
f are observed with zero-mean sub-Gaussian noise
with variance proxy σ2. Then for a constant βt =
2 log

(
2T |A|/δ

)
, with probability greater than 1−δ, the

SupNTK-UCB algorithm satisfies

R(T ) = O
(√

T
(√

γTσ−2(log T )3 log(T log T |A|/δ)

+ σB
))
.

The first term corresponds to regret of the random ex-
ploration steps, and the second term results from the
steps at which the actions were taken by the NTK-
UCB policy. Proofs of Theorems 3.2 and 3.3 are given
in Appendices C.2 and C.4 respectively. We finish our
analysis of the NTK-UCB with the following conclu-
sion, employing our bound on γT from Theorem 3.1 in
Theorems 3.2 and 3.3.

Corollary 3.4. Suppose f satisfies either the
GP or RKHS assumption. Then the NTK-
UCB (resp. its Sup variant) has sublinear regret

R(T ) = Õ(CNN(d, L)T
2d−1
2d ) with high probability.

Hereby, CNN(d, L) is a coefficient depending on the
eigen-decay of the NTK.

4 Main Result: NN-UCB – Neural
Contextual Bandits without Regret

Having analyzed NTK-UCB, we now present our neu-
ral net based algorithm NN-UCB, which leverages the
connections between NN training and GP regression
with the NTK. By design, NN-UCB benefits from the
favorable properties of the kernel method which helps
us with establishing our regret bound. NN-UCB re-
sults from approximating the posterior mean and vari-
ance functions appearing in the UCB criterion (Equa-
tion 5). First, we approximate the posterior mean µt−1

with f (J) = f(x;θ(J)), the neural network trained for
J steps of gradient descent with some learning rate η
with respect to the regularized LSE loss

L(θ) =

t−1∑
i=1

(
f(xi;θ)− yi

)2
+mσ2

∣∣∣∣θ − θ0
∣∣∣∣2

2
, (7)

where m is the width of the network and θ0 denotes
the network parameters at initialization. This choice
is motivated by Arora et al. [2], who show point-wise
convergence of f (∞)(x), the solution of gradient de-
scent on the unregularized LSE loss, to fntk(x), the
GP posterior mean when the samples are noiseless.
We adapt their result to our setting where we consider
`2 regularized loss and noisy rewards. It remains to
approximate the posterior variance. Recall from Sec-
tion 2.2 that the NTK is the limit of 〈g(x), g(x′)〉/m
as m → ∞, where g(·) is the gradient of the net-
work at initialization. This property hints that for
a wide network, g/

√
m can be viewed as substitute for

φ, the infinite-dimensional feature map of the NTK,
since kNN(x,x′) = 〈φ(x),φ(x′)〉. By re-writing σt−1

in terms of φ and substituting φ with g/
√
m, we get

σ̂2
t−1(x) =

gT (x)√
m

(
σ2I +

t−1∑
i=1

gT (xi)g(xi)

m

)−1 g(x)√
m
.

At the beginning, NN-UCB initializes the network pa-
rameters to θ0. Then at step t, σ̂t−1(·) is calculated
using g(·,θ0) and the action is chosen via maximizing
the approximate UCB

xt = arg max
x=zta,a∈A

f (J)(x;θt−1) +
√
βtσ̂t−1(x)

where θt−1 is obtained by training f(·;θ0), for J steps,
with gradient descent on the data observed so far. This
algorithm essentially trains a neural network for es-
timating the reward and combines it with a random
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feature model for estimating the variance of the re-
ward. These random features arise from the gradient
of a neural network with random Gaussian parameters.
The pseudo-code to NN-UCB is given in Appendix D.
In Appendix A.3, we assess the ability of the approx-
imate UCB criterion to quantify uncertainty in the
reward via experiments on the MNIST dataset.

Regret Bound Similar to Theorem 3.3, we make
the RKHS assumption on f and establish a regret
bound on the Sup variant of NN-UCB. To do so,
we need two further technical assumptions. Follow-
ing Zhou et al. [49], for convenience we assume that
f(x;θ0) = 0, for any x = zta where 1 ≤ t ≤ T and
a ∈ A. As explained in Appendix B.2, this require-
ment can be fulfilled without loss of generality. We
also assume that the kernel matrix is bounded away
from zero, i.e., λ0I 4 KNN. This assumption is com-
mon within the literature [2, 10, 17, 49] and is satisfied
as long as no two inputs xt and xt′ are identical.

Theorem 4.1. Let δ ∈ (1, 0). Suppose f lies in the
RKHS of kNN with ‖f‖kNN

≤ B. Samples of f are ob-
served with zero-mean sub-Gaussian noise of variance
proxy σ2. Set J > 1, βt = 2 log(2T |A|/δ) constant,
choose the width to satisfy

m ≥ poly
(
T, L, |A|, σ−2, B−1, λ−1

0 , log(1/δ)
)
,

and η = C(LmT + mσ2)−1 with some universal con-
stant C. Then, with probability greater than 1− δ, the
regret of SupNN-UCB satisfies

R(T ) = O
(√

T
(√

γTσ−2(log T )3 log(T log T |A|/δ)

+ σB
))
.

The pseudo-code of SupNN-UCB and the proof are
given in Appendix D. The key idea there is to show
that given samples with noisy rewards, members of Hk
are well estimated by the solution of gradient descent
on the `2 regularized LSE loss. The following lemma
captures this statement.

Lemma 4.2 (Concentration of f and f (J), simplified).
Consider the setting of Theorem 4.1 and further as-
sume that the rewards {yi}i<t are independent condi-
tioned on the contexts {xi}i<t. Let 0 < δ < 1 and
set m, βt and η according to Theorem 4.1. Then, with
probability greater than 1− 2e−βT /2 − δ,

|f (J)(xt)− f(xt)| ≤ σ̂t−1(xt)
√
βT Poly(B,m, t, L, η).

NN-UCB obeys essentially the same regret guarantee
as NTK-UCB. In Theorem 4.1, the asymptotic
growth of the regret is given for large enough m, and
terms that are o(1) with T are neglected. To compare

NN-UCB with NTK-UCB in more detail, we revisit
the bound for a fixed m. With probability greater
than 1− δ,

RT ≤O
(√

TγT
√
σ−2(log T )3 log (T log T |A|/δ)

+

(
1 + σ

√
(m log(T log T |A|/δ))−1

)
σB
√
T

+ L3

(
TB

mσ2

)5/3√
m3 logm

+

√
B(1−mησ2)J/2√

mη log(T log T |A|/δ)

)
.

The last two terms, which vanish for sufficiently large
m, convey the error of approximating GP inference
with NN training: The fourth term is the gradient
descent optimization error, and the third term is a
consequence of working with the linear first order
Taylor approximation of f(x;θ). The first two terms,
however, come from selecting explorative actions, as
in the regret bound of NTK-UCB (Theorem 3.3).
The first term denotes regret from random exploration
steps, and the second presents the regret at the steps
for which the UCB policy is used to pick actions.

Comparison with Prior Work The Neural-
UCB algorithm introduced by Zhou et al. [49] bears
resemblance to our method. At step t, NN-UCB ap-
proximates the posterior variance via Equation 7 with
g(·;θ0), a fixed feature map. Neural-UCB, how-
ever, updates the feature map at every step t, by us-
ing g(·;θt−1), where θt−1 is defined as before. Ef-
fectively, Zhou et al. adopt a GP prior that changes
with t. Under additional assumptions on f and for
σ ≥ max{1, B−1}, they show that for Neural-UCB,
a guarantee of the following form holds with probabil-
ity greater than 1− δ.

RT ≤ Õ
(√

TI(yT ;fT )
[
σ
√
I(yT ;fT ) + 1− log δ

+
√
T (σ +

TL

σ
)
(
1− σ2

TL

)J/2
+ σB

])
The bound above is data-dependent via I(yT ;fT ) and
in this setting, the only known way of bounding the
information gain is through γT . The treatment of
regret given in Yang et al. [46] and Zhang et al. [48]
also results in a bound of the form Õ(

√
TγT ). How-

ever, the maximum information gain itself grows as
Õ(T (d−1)/d) for the NTK covariance function. There-
fore, without further assumptions on the sequence of
contexts, the above bounds are vacuous. In contrast,
our regret bounds for NN-UCB are sublinear without
any further restrictions on the context sequence. This
follows from Theorem 3.1 and Theorem 4.1:
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Corollary 4.3. Under the conditions of Theorem 4.1,
for arbitrary sequences of contexts, with probability
greater than 1− δ, SupNN-UCB satisfies,

R(T ) = Õ(CNN(d, L)T
2d−1
2d ).

The coefficient CNN(d, L) in Corollary 3.4 and 4.3
denotes the same constant. Figures 1 and 2 in
Appendix A plot the information gain and regret
obtained for NN-UCB when used on the task of
online MNIST classification.

5 Extensions to Convolutional Neural
Networks

So far, regret bounds for contextual bandits based on
convolutional neural networks have remained elusive.
Below, we extend our results to a particular case of 2-
layer convolutional networks. Consider a cyclic shift cl
that maps x to cl ·x = (xl+1, xl+2, · · · , xd, x1, · · · , xl).
We can write a 2-layer CNN, with one convolutional
and one fully-connected layer, as a 2-layer NN that is
averaged over all cyclic shifts of the input

fCNN(x;θ) =
√

2

m∑
i=1

vi

[1

d

d∑
l=1

σrelu(〈wi, cl · x〉)
]

=
1

d

d∑
l=1

fNN(cl · x;θ).

Let Cd denote the group of cyclic shifts {cl}l<d.
Then the 2-layer CNN is Cd-invariant, i.e.,
fCNN(cl · x) = fCNN(x), for every cl. The cor-
responding CNTK is also Cd-invariant and can be
viewed as an averaged NTK

kCNN(x,x′) =
1

d2

d∑
l, l′=1

kNN(cl · x, cl′ · x′)

=
1

d

d∑
l=1

kNN(x, cl · x′).

(8)

The second equality holds because kNN(x,x′) depends
on its arguments only through the angle between
them. In Appendix B.3, we give more intuition about
this equation via the random feature kernel formula-
tion [13, 32]. Equation 8 implies that the CNTK is a
Mercer kernel and in Lemma 5.1 we give its Mercer de-
composition. The proof is presented in Appendix B.4.

Lemma 5.1. The Convolutional Neural Tangent Ker-
nel corresponding to fCNN(x;θ), a 2-layer CNN with
standard Gaussian weights, can be decomposed as

kCNN(x,x′) =

∞∑
k=0

µk

N̄(d,k)∑
j=1

Ȳj,k(x)Ȳj,k(x′)

where µk ' C(d, L)k−d. The algebraic multiplic-
ity is N̄(d, k) ' N(d, k)/d, and the eigenfunctions
{Ȳj,k}j≤N̄(d,k) form an orthonormal basis for the space

of Cd-invariant degree-k polynomials on Sd−1.

With this lemma, we show that the 2-layer CNTK has
the same distinct eigenvalues as the NTK, while the
eigenfunctions and the algebraic multiplicity of each
distinct eigenvalue change. The eigenspaces of the
NTK are degree-k polynomials, while for the CNTK,
they shrink to Cd-invariant degree-k polynomials.
This reduction in the dimensionality of eigenspaces
results in a smaller algebraic multiplicity for each
distinct eigenvalue.

CNTK-UCB We begin by bounding the maximum
information gain γ̄T , when the reward function is as-
sumed to be a sample from GP(0, kCNN). Proposi-
tion 5.2 establishes that the growth rate of γ̄T matches
our result for maximum information gain of the NTK.
The dependence on d however, is improved by a factor
of d(d−1)/d, indicating that the speed of learning about
the reward function is potentially d(d−1)/d times faster
for methods that use a CNN.

Proposition 5.2. Suppose the input domain satisfies
X ⊂ Sd−1, and samples of f are observed with
i.i.d. zero-mean sub-Gaussian noise of variance proxy
σ2 > 0. Then the maximum information gain of the
convolutional neural tangent kernel kCNN satisfies

γ̄T = O
((

TC(d,L)

d log(1+ T
σ2

)

) d−1
d

log

(
1 + T

σ2

(
TC(d,L)

d log(1+ T
σ2

)

) d−1
d

))
.

The proof is given in Appendix C.1. CNTK-UCB is
defined as the convolutional variant of NTK-UCB.
We take the UCB policy (Equation 5) and plug
in kCNN as the covariance function for calculating
the posterior mean and variance. By Lemma 5.1,
the rate of eigen-decay, and therefore, the smooth-
ness properties, are identical between NTK and
the 2-Layer CNTK. Through this correspondence,
Theorems 3.2 and 3.3 carry over to CNTK-UCB,
thus guaranteeing sublinear regret.

Corollary 5.3. It follows from Theorem 3.2, Theo-
rem 3.3, and Proposition 5.2, that when f satisfies ei-
ther the GP or the RKHS assumption, CNTK-UCB
(resp. its Sup variant) has a sublinear regret

R(T ) = Õ
(
CNN(d, L)

d(d−1)/2d
T

2d−1
2d

)
with high probability. Here CNN(d, L) is a coefficient
depending on the eigen-decay of the NTK.

Corollary 5.3 implies that while regret for both algo-
rithms grows at the same rate with T , CNTK-UCB
potentially outperforms NTK-UCB. This claim is
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investigated on the online MNIST classification task
in Figure 3 in Appendix A.

CNN-UCB Here we adopt the structure of NN-
UCB and replace the previously used deep fully-
connected network by a 2-layer convolutional net-
work. We show that under the same setting as in
Theorem 4.1, for each T , there exists a 2-layer CNN
with a sufficiently large number of channels, such
that the Sup variant of CNN-UCB satisfies the same
O(T (2d−1)/2d) regret rate.

Theorem 5.4. Let δ ∈ (1, 0). Suppose f lies in the
RKHS of kCNN with ‖f‖kCNN

≤ B. Set J > 1 and
βt = 2 log(2T |A|/δ) constant. For any T ≥ 1, there
exists m such that if η = C(LmT +mσ2)−1 with some
universal constant C, then with probability greater than
1− δ, SupCNN-UCB satisfies,

R(T ) = O
(√

T
(√

γTσ−2(log T )3 log(T log T |A|/δ)

+ σB
))
.

The main ingredient in the proof of Theorem 5.4 is
Lemma D.14, a convolutional variant of Lemma 4.2.
We prove that a 2-layer CNN trained with gradient
descent on the `2 regularized loss can approximate
the posterior mean of a GP with CNTK covariance,
calculated from noisy rewards. To this end, we show
that training fCNN(x;θ) with gradient descent causes
a small change in the network parameters θ and the
gradient vector ∇θfCNN(x;θ). Appendix D.2 presents
the complete proof. Comparing Theorem 4.1 and The-
orem 5.4, aside from the assumption on m being milder
in the former, it is clear that the regrets for both al-
gorithms grow at the same rate with T . We do not
expect this rate to hold for convolutional networks
whose depth is greater than two. In particular, deeper
CNNs are no longer Cd-invariant, and our analysis for
CNN-UCB relies on this property for translating the
analysis from the fully-connected setting to the convo-
lutional case. Although the growth rate with T has re-
mained the same, the coefficients in the regret bounds
are improved for the convolutional counterparts by a
factor of d(d−1)/2d. The following corollary presents
this observation.

Corollary 5.5. Under the RKHS assumption and
provided that the CNN used in SupCNN-UCB has
enough channels, with high probability, this algorithm
satisfies

R(T ) = Õ
(
CNN(d, L)

d(d−1)/2d
T

2d−1
2d

)
.

To our knowledge, Corollary 5.5 establishes the first
sublinear regret bound for contextual bandits based
on convolutional neural networks.

6 Conclusion

We proposed NN-UCB, a UCB based method for con-
textual bandits when the context is rich or the reward
function is complex. Under the RKHS assumption on
the reward, and for any arbitrary sequence of contexts,
we showed that the regret RT grows sub-linearly as
Õ(T (2d−1)/2d), implying convergence to the optimal
policy. We extended this result to CNN-UCB, a vari-
ant of NN-UCB that uses a 2-layer CNN in place
of the deep fully-connected network, yielding the first
regret bound for convolutional neural contextual ban-
dits. Our approach analyzed regret for neural network
based UCB algorithms through the lens of their re-
spective kernelized methods. A key element in this
approach is bounding the regret in terms of the max-
imum information gain γT . Importantly, we showed
that γT for both the NTK and the 2-layer CNTK is
bounded by Õ(T (d−1)/d), a result that may be of in-
dependent interest. We believe our work opens up
further avenues towards extending kernelized methods
for sequential decision making in a principled way to
approaches harnessing neural networks.
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A Experiments

We carry out experiments on the task of online MNIST [26] classification, to assess how well our analysis
of information gain and regret matches the practical behavior of our algorithms. We find that the UCB al-
gorithms exhibit a fairly consistent behavior while solving this classification task. In Section A.3 we design
two experiments to demonstrate that σ̂t−1 and the approximate UCB defined for NN-UCB, are a meaning-
ful substitute for the posterior variance and upper confidence bound in NTK-UCB. We provide the code at
https://github.com/pkassraie/NNUCB.

A.1 Technical Setup

We formulate the MNIST classification problem such that it fits the bandit setting, following the setup of Li
et al. [27]. To create the context matrix z from an flattened image z̃ ∈ Rd, we construct

zT =


z̃T 0 · · · 0
0 z̃T · · · 0
...

...
...

...
0 · · · 0 z̃T

 ∈ RK×Kd

where K = |A|, which is 10 in the case of MNIST dataset. The action taken a is a one-hot K-dimensional
vector, indicating which class is selected by the algorithm. The context vector corresponding to an action i is

xi = zai =
[
0 · · · z̃ · · · 0

]
∈ RKd

where z̃ occupies indices (i − 1)d to id. At every step the context is picked at random and presented to the
algorithm. At step t, if the correct action is picked, then a noiseless reward of yt = 1 is given, and otherwise
yt = 0.

Training Details For NTK-UCB and CNTK-UCB we use the implementation of the NTK from the Neural
Tangents package [30]. PyTorch [31] is used for defining and training the networks in NN-UCB and CNN-
UCB. To calculate the approximate UCB, we require the computation of the empirical gram matrix GTG where
GT = [g(xt;θ

0)]t≤T . To keep the computations light, we always use the diagonalized matrix as a proxy for
GTG. Algorithm 3 implies that at every step t the network should be trained from initialization. In practice,
however, we use a Stochastic Gradient Descent optimizer. To train the network at step t of the algorithm, we
consider the loss summed over the data points observed so far, and run the optimizer on f(x;θt−1) rather than
starting from f(x;θ0). At every step t, we stop training when J reaches 1000, or when the average loss gets
small L(θJ)/(t− 1) ≤ 10−3. Until T ≤ 1000 we train at every step, for T > 1000, however, we train the network
once every 100 steps.

Hyper-parameter Tuning For the simple task of MNIST classification, we observe that the width of the net-
work does not significantly impact the results, and after searching the exponential space m ∈ {64, 128, 512, 1024}
we set m = 128 for all experiments. The models are not extensively fine-tuned and hyper-parameters of the
algorithms, β, σ, are selected after a light search over {10−2k, 0 ≤ k ≤ 5}, and vary between plots. For all
experiments, we set the learning rate η = 0.01.

A.2 Growth rates: Empirical vs Theoretical

We test our algorithms on the online MNIST classification task. We plot the empirical information gain and
regret to verify the tightness of our bounds. For the information gain of the NN-UCB, we let the algorithm
run for T = 10000 steps. Then we take the sequence (xt)t≤T from this run and plot Î(yt;ft) the empirical

information gain against time t, where Î(yt;ft) = 1
2 log det(I + σ−2GT

t Gt), with GT
t = [g(xτ ;θ0)]τ≤t. Figure 1

shows the growth of Î for NN-UCB with networks of various depth. To calculate the empirical growth rate (given
in the figure’s labels), we fit a polynomial to the curve, and obtain a rate of roughly O(T 0.5). Our theoretical rate
is Õ(T (d−1)/d), where d = 10× 784 is the dimension of xt. Note that the theoretical rate bounds the regret for
arbitrary sequences of contexts including adversarial worst cases. Moreover, in the case of MNIST, the contexts
reside on a low-dimensional manifold. As for the regret, we run NN-UCB and NTK-UCB for T = 5000 steps
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Figure 1: Empirical information gain of NN-UCB
with networks of various depths, on the online MNIST
classification problem, is of rate O(T 1/2). Our bound
on the maximum information gain (Theorem 3.1) grows
as Õ(T (d−1)/d).
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Figure 2: The regret of NTK-UCB and NN-UCB
with networks of various depths, on the online MNIST
classification problem, is of rate O(T 3/4). In the worst
case it grows as Õ(T (2d−1)/2d) (Corollaries 3.4 & 4.3).

and plot the regret, which in the case of online MNIST classification, shows the number of misclassified digits.
Fitting a degree-1 polynomial to the log-log curves in Figure 2 gives an empirical rate of around O(T 0.75). Our
theoretical bound for these algorithms grows as O(T (2d−1)/2d).

In Section 5, we conclude that the information gain and the regret grow with the same rate for both NTK-
UCB and its convolutional variant, however, CNTK-UCB tends to have a smaller regret for every T . This
was due to the fact that R(T ) = Õ(CNN(d, L)T (2d−1)/2d) for the NTK-UCB, while in the convolutional case
R(T ) = Õ(CNN(d, L)T (2d−1)/2d/d(d−1)/2d) and d ≥ 1. The upper bound on the regret being tighter for CNTK-
UCB does not imply that the regret will be smaller as well. In Figure 3 we present both algorithms with the
same set of contexts, and investigate whether in practice the convolutional variant can outperform NTK-UCB,
which seems to be the case for the online MNIST classification task.

A.3 NN-UCB in the face of Uncertainty

The posterior mean and variance have a transparent mathematical interpretation. For designing NN-UCB,

however, we approximate µt−1 and σt−1 with f
(J)
t−1 and σ̂t−1 which are not as easy to interpret. We design two

experiments on MNIST to assess how well this approximation reflects the properties of the posterior mean and
variance.

Effect of Imbalanced Classes For this experiment, we limit MNIST to only zeros and ones. We create a
dataset with underrepresented zeros, such that the ratio of class populations is 1 : 20. This experiment shows that
σ̂t−1 the approximate posterior variance of NN-UCB behaves as expected, verifying our derivation method in
Section 4. The experiment setup is as follows. With 80% of this dataset, we first run the NN-UCB and train the
network. On the remaining 20%, we again run the algorithm; no longer training the network, but still updating
the posterior variance at every step. Given in Figure 4, we plot the histogram of the posterior variance and
upper confidence bound during this testing phase. At step t, let σ(post)(x∗t ) be the posterior variance calculated
for the true digit x∗t . We give two separate plots for when the true digit x∗ comes from the under-represented
class, and when it comes from the over-represented class. Distinguishing between the steps t at which the action
by NN-UCB is correct or not, we give two histogram in each plot. We also plot histograms of the corresponding
UCB(x∗t ) values. Figure 4 displays that when the ground truth is over-represented and action is picked correctly,
the algorithm always has a high confidence (large UCB) and small uncertainty (posterior variance). For the over-
represented class, the histogram of correct picks (green) is concentrated and well separated from the histogram
of incorrect picks (red) for both σpost and UCB. This implies that the reason behind misclassifying an over-
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Figure 3: NN-UCB vs. CNN-UCB for online MNIST
classification. Both algorithms exhibit a similar growth
rate with T , while CNN-UCB outperforms NN-UCB,
as described in Corollary 5.3.
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Figure 4: Under-representation Test. Histograms of σ̂t
and approximate UCB are plotted for an imbalanced
dataset of zeros and ones. In lack of data, NN-UCB
chooses the sub-optimal action with a high confidence.

represented digit is having a large variance, and the algorithm is effectively performing exploration because
the estimated reward is small for every action. For the under-represented class, however, the red and green
histograms are not well separated. Figure 4 shows that sometimes the digit has been misclassified with a small
posterior variance, or a large UCB. In lack of data, the learner is not able to refine its estimation of the posterior
mean or variance. It is forced to do explorations more often which results in incorrect classifications.

Effect of Ambiguous Digits We also assess the ability of the UCB to quantify uncertainty in light of
ambiguous MNIST samples. To this end, we define an ambiguous digit to be a data point that is classified
incorrectly by a well-trained classifier. We first train a 2-layer CNN with 80% of the MNIST dataset as the
standard MNIST classifier. The rest of the data we use for testing. We save the misclassified digits from the
testset to study NN-UCB. Figure 5 shows a few examples of such digits and the UCB for the top 5 choices of
NN-UCB after observing the digit. It can be seen that for these digits there is no action which the algorithm can
pick with high confidence. Using the 2-Layer network that was trained on the training set, we run NN-UCB on
the test set. We do not train the network any further while running the algorithm, but still update the posterior
variance. For any digit, let x∗1 denote the maximizer of the UCB, and x∗2 be the class with the second largest
UCB value. Figure 6 shows the histogram of Ux∗1 − Ux∗2 . The red histogram is for ambiguous samples and the
green one for the non-ambiguous ones. Looking at the medians, we see that for clear samples, the algorithm
often has a high confidence on its choice, while this is not the case for the ambiguous digits.

B Details of the Main Result

Here we elaborate on a few matters from the main text.

B.1 On Section 2.1: Connections Between GP and RKHS Assumptions

We explain how the GP and RKHS assumption imposes smoothness on the reward. By assuming that f ∼
GP(0, k), we set Cov(f(x), f(x′)) to k(x,x′). In doing so, we enforce smoothness properties of k onto f . As an
example, suppose some normalized kernel k satisfies boundedness or Lipschitz-continuity, then for ‖x− x′‖ ≤ δ,
k(x,x′) is close to k(x,x) = 1. The GP assumption then ensures high correlation for value of f at these points,
making a smooth f more likely to be sampled. The NTK is rotationally invariant and can be written as κ(xTx′),
where κ is continuous and C∞ over (−1, 1), but is not differentiable at ±1 [7]. Therefore, our GP assumption
only implies that it is more likely for f to be continuous. Regarding the RKHS assumption, the Stone-Weierstrass
theorem shows that any continuous function can be uniformly approximated by members of HkNN

. We proceed
by laying out the connection between the two assumptions in more detail.



Neural Contextual Bandits without Regret

0.00 0.02 0.04 0.06 0.08
UCB

9
8
7
6
5

Cl
as

s

0.00 0.02 0.04 0.06
UCB

2
9
8
7
6

Cl
as

s

0.00 0.02 0.04 0.06
UCB

6
9
8
7
5

Cl
as

s

0.00 0.02 0.04 0.06
UCB

8
9
7
6
5

Cl
as

s

Figure 5: Examples of ambiguous Dig-
its and the top 5 choices of NN-UCB
with the largest UCBs.
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Figure 6: Ambiguity Test. Histogram of Ux∗1 − Ux∗2 is plotted.
For non-ambiguous digits, NN-UCB is significantly more confident
about the class it picks.

Equipped with the Mercer’s theorem, we can investigate properties of f ∼ GP(0, k), in the general case where k
is a Mercer kernel and X is compact. The following proposition shows that sampling f from a GP is equivalent
to assuming f =

∑
i βiφi, and sampling the coefficients βi from N (0, λi), where φi and λi are the eigenfunctions

and eigenvalues of the GP’s kernel function.

Proposition B.1. Let k to be a Hilbert-Schmidt continuous positive semi-definite kernel function, with (λi)
∞
i=1,

and (φi)
∞
i=1 indicating its eigenvalues and eigenfunctions. Assume X is compact. If f ∼ GP(0, k), then f =∑

i βiφi, where βi
i.i.d∼ N (0, λi).

Proof. It suffices to show that if f =
∑
i βiφi, then for any x, x′ ∈ X , we have:

Ef(x) = 0, Ef(x)f(x′) = k(x,x′).

Since βi are Gaussian and independent,

Ef(x) =
∑
i

φi(x)Eβi = 0,

Ef(x)f(x′) =
∑
i

φi(x)φi(x
′)Eβ2

i =
∑
i

λiφi(x)φi(x
′) = k(x,x′).

Here we have used orthonormality of φis.

Proposition B.1 suggests that if f ∼ GP(0, k) then ‖f‖k is almost surely unbounded, since by definition of inner
products on Hk we have

E||f ||k =
∑
i

E
β2
i

λi
=
∑
i

λi
λi
.

This expectation is unbounded for any kernel with an infinite number of nonzero eigenvalues. Therefore, with
probability one, ||f ||k is unbounded and not a member of Hk. However, the posterior mean of f after observing
t samples lies in Hk (Proposition B.2). This connection implies that our estimate of f , under both RKHS and
GP assumption will be a k-norm bounded function, similarly reflecting the smoothness properties of the kernel.

Proposition B.2. Assume f ∼ GP(0, k), with k Mercer and X compact. Then µT the posterior mean of f
given (xi, yi)

T
i=1 has bounded k-norm, i.e. µT ∈ Hk.
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Proof. We first recall the Representer Theorem [38]. Consider the loss function J(f) = Q(fT ;yT ) + σ2||f ||k,
where fT = [f(x1), · · · , f(xT )]T . Q is a `2-loss assessing the fit of fT to yT . Then J(f) has a unique minimizer,
which takes the form:

f̂ =

T∑
i=1

αik(xi, ·)

Note that this sum is finite, hence f̂ is k-norm bounded and in Hk. Minimizing J over α, we get

α̂ = (KT + σ2I)−1yT

Indicating that f̂(x) = µT (x).

B.2 On Assumptions of Theorem 4.1

For technical simplicity, in Theorem 4.1 and its convolutional extension, Theorem 5.4, we require the network
at initialization to satisfy f(x;θ0) = 0 for all x ∈ X . We explain how this assumption can be fulfilled without
limiting the problem settings to a specific network or input domain. Without loss of generality, we can initialize
the network as follows. For l ≤ L let the weights at initialization be,

W (l) =

(
W 0
0 W

)
, W (L+1) =

(
wT ,−wT

)
where entries of W and w are i.i.d and sampled from the normal distribution. Moreover, we assume that
[x]j = [x]j+d/2 for any x = zta where 1 ≤ t ≤ T and any a ∈ A. Any input x can be converted to satisfy this

assumption by defining an auxiliary input x̃ = [x,x]/
√

2 in a higher dimension. This mapping together with the
initialization method, guarantee that output of the network at initialization is zero for every possible input that
the learner may observe during a T -step run of the algorithm. Essentially, this property comes into effect when
using result from Arora et al. [2] or working with the Taylor expansion of the network around initialization. It
allows us to write f(xi;θ) ≈ 〈gT (xi;θ

0),θ − θ0〉.

B.3 On Section 5: CNTK as an averaged NTK

This section gives an intuition on, and serves as a sketch for proving Equation 8. Consider a 2-layer ReLU
network with width m defined as,

fNN(x;θ(0)) =
2√
m

m∑
i=1

v
(0)
i σ(〈w(0)

i ,x〉)

where each weight parameter is an i.i.d sample from N (0, 1). We denote the complete weight vector by θ and
write the first order Taylor approximation of this function with respect to θ around the initialization.

fNN(x;θ) ' fNN(x;θ(0)) +

f1(x;v)︷ ︸︸ ︷
2√
m

m∑
i=1

(vi − v(0)
i )σ(〈w(0)

i ,x〉)

+
2√
m

m∑
i=1

v
(0)
i σ̇(〈w(0)

i ,x〉)〈wi −w(0)
i ,x〉︸ ︷︷ ︸

f2(x;W )

Limit the input domain to Sd−1, equipped with the uniform measure. Consider the function class FNTK =
{f(x) = f1(x;v) + f2(x;W ) s.t. v ∈ Rm, W ∈ Rm×d}. It is straightforward to show that FNTK is an RKHS
and the following kernel function satisfies the reproducing property [13].

h(x,x′) =
1

m

m∑
i=1

σ(〈w(0)
i ,x〉)σ(〈w(0)

i ,x′〉) +
1

m

m∑
i=1

xTx′(v
(0)
i )2σ̇(〈w(0)

i ,x〉)σ̇(〈w(0)
i ,x′〉)
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Random Feature Derivation of 2-layer CNTK We may repeat the the first order Taylor approximation
for fCNN.

fCNN(x;θ) ' fCNN(x;θ(0)) +

fCNN,1(x;v)︷ ︸︸ ︷
2√
m

m∑
i=1

(vi − v(0)
i )
[1

d

d∑
l=1

σ(〈w(0)
i , cl · x〉)

]
+

2√
m

m∑
i=1

v
(0)
i

[1

d

d∑
l=1

σ̇(〈w(0)
i , cl · x〉)〈wi −w(0)

i , cl · x〉
]

︸ ︷︷ ︸
fCNN,2(x;W )

And define FCNTK to be the convolutional counterpart of FNTK

FCNTK = {f(x) = fCNN,1(x;v) + fCNN,2(x;W ) s.t. v ∈ Rm, W ∈ Rm×d.}

Then FCNTK is reproducing for the following kernel function,

h̄(x,x′) =
1

m

m∑
i=1

1

d2

d∑
l=1

d∑
l′=1

σ(〈w(0)
i , cl · x〉)σ(〈w(0)

i , cl′ · x′〉)

+
1

m

m∑
i=1

1

d2

d∑
l=1

d∑
l′=1

〈cl · x, cl′ · x′〉(v(0)
i )2σ̇(〈w(0)

i , cl · x〉)σ̇(〈w(0)
i , cl′ · x′〉)

As m the number of channels grows, the average over the parameters converges to the expectation over w and
v, and the kernel becomes rotation invariant, i.e. only depends on the angle between x and x′. Therefore, as
m→∞

h̄(x,x′) =
1

d

1

m

m∑
i=1

d∑
l=1

σ(〈w(0)
i , cl · x〉)σ(〈w(0)

i ,x′〉)

+ 〈cl · x,x′〉(v(0)
i )2σ̇(〈w(0)

i , cl · x〉)σ̇(〈w(0)
i ,x′〉)

=
1

d

d∑
l=1

h(cl · x,x′)

Equation 8 follows by noting that in the infinite m limit, h and h̄ converge to kNN and kCNN respectively. A
rigorous proof is given in Propostition 4 from Mei et al. [28].

B.4 Proof of Lemma 5.1

Let Vd,k be the space of degree-k polynomials that are orthogonal to the space of polynomials of degree less than
k, defined on Sd−1. Then Vd,k(Cd) denotes the subspace of Vd,k that is also Cd-invariant.

Proof of Lemma 5.1. The NTK kernel satisfies the Mercer condition and has the following Mercer decomposition
[7],

k(x,x′) =

∞∑
k=0

µk

N(d,k)∑
j=1

Yj,k(x)Yj,k(x′)

where {Yj,k}j≤N(d,k) form an orthonormal basis for Vd,k. Bietti and Bach [7] further show that Yj,k is the j-th
spherical harmonic polynomial of degree k, and N(d, k) = dim(Vd,k) gives the total count of such polynomials,
where

N(d, k) =
2k + d− 2

k

(
k + d− 3

d− 2

)
.

For any integer k, it also holds that [7]

N(d,k)∑
j=1

Yj,k(x)Yj,k(x′) = N(d, k)Q
(d)
k (xTx′) (B.1)
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where Q
(d)
k is the k-th Gegenbauer polynomial in dimension d. It follows from Equation 8 that k̄ is also Mercer.

Assume that it has a Mercer decomposition of the form

k̄(x,x′) =

∞∑
k=0

µ̄k

N̄(d,k)∑
j=1

Ȳj,k(x)Ȳj,k(x′)

We now proceed to identify Ȳj,k and calculate N̄(d, k). From Equations 8 and B.1 we also conclude that

k̄(x,x′) =
1

d

d∑
l=1

k(x, cl · x′) =
1

d

d∑
l=1

∞∑
k=0

µkN(d, k)Q
(d)
k (〈x, cl · x′〉).

Lemma 1 in Mei et al. [28] states that for any integer k,

N(d, k)

d

d∑
l=1

Q
(d)
k (〈x, cl · x′〉) =

M(d,k)∑
j=1

Zj,k(x)Zj,k(x′) (B.2)

where Zj,k form an orthonormal basis for Vd,k(Cd). Therefore, (µk, Zj,k)j,k is a sequence eigenvalue eigenfunction
pairs for k̄ and we have

µ̄k = µk

Ȳj,k = Zj,k

N̄(d, k) = M(d, k)

It remains to show that M(d, k) ' N(d, k)/d when Cd is the group of cyclic shifts acting on Sd−1. For the
orthonormal basis (Zj,k)j over the unit sphere, it holds that,

M(d,k)∑
j=1

Zj,k(x)Zj,k(x) = M(d, k).

Then Equation B.2 gives,

M(d, k)

N(d, k)
=

1

d

d∑
l=1

Q
(d)
k (〈x, cl · x〉)

= Θ(d−1),

where the last equation holds directly due to Lemma 4 in Mei et al. [28].

C Details of NTK-UCB and CNTK-UCB

Section C.1 gives the proof of our statements on the information gain (Theorem 3.1, Proposition 5.2). The regret
bounds of NTK-UCB under the GP (Theorem 3.2) and the RKHS assumptions (Theorem 3.3) are proven in
Section C.2 and Section C.4, respectively. In Section C.3, we present SupNTK-UCB (Algorithm 2), and discuss
the exploration policy of this algorithm and its properties.

C.1 Proof of Theorem 3.1 and Proposition 5.2

We begin by giving an overview of the proof. Under the conditions of Theorem 3.1, the NTK is Mercer [11] and
can be written as k(x,x′) =

∑
i≥0 λiφi(x)φi(x

′), with (φi)i≥0 denoting the orthonoromal eigenfunctions. The
main idea is to break k into kp + ko where kp(x,x

′) =
∑
i≤D̃ λiφi(x)φi(x

′) has a finite dimensional feature map

(φi)i≤D, corresponding to the sequence of D̃ largest eigenvalues of k. For any arbitrary sequence XT , we are
then able to decompose I(yT ;fT ) in two terms, one corresponding to information gain of kp, and the other, the

tail sum of the eigenvalue series
∑
i≥D̃ λi. We proceed by bounding each term separately and picking D̃ such

that the second term becomes negligible.
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Proof of Theorem 3.1. This proof adapts the finite-dimensional projection idea used in Vakili et al. [44]. Cao
et al. [11] show that the NTK has a Mercer decomposition on the d-dimensional unit hyper-sphere. Bietti and
Bach establish that

kNN(x,x′) =
∑
k≥0

µk

N(d,k)∑
j=1

Yj,k(x)Yj,k(x′),

where Yj,k is the j-th spherical harmonic polynomial of degree k, and there are

N(d, k) =
2k + d− 2

k

(
k + d− 3

d− 2

)

of such k-degree polynomials. Using Stirling’s approximation we can show that N(d, k) = Θ(kd−2). Functions
{Yj,k} are an algebraic basis for HkNN the RKHS that is reproducing for kNN. Consider a finite dimensional
subspace of HkNN that is spanned by the eigenfunctions corresponding the first D distinct eigenvalues of kNN,
ΦD =

(
(Yj,0)j≤N(d,0), · · · , (Yj,D)j≤N(d,D)

)
. We decompose the NTK as kNN = kP + kO, where kP is the kernel

for the finite dimensional RKHS, and kO represents the kernel for the Hilbert space orthogonal to it. Let D̃
denote the length of the feature map corresponding to kP , where

D ≤ D̃ =

D∑
k=0

N(d, k) ' C
D∑
k=0

kd−2 ≤ C (D + 1)d−1

d− 1
. (C.1)

We write the information gain in terms of eigenvalues of kp and kO, and find D such that the finite-dimensional
term dominates the infinite-dimensional tail. Assume the arbitrary sequence XT = (x1, · · · ,xT ) is observed.
The information gain is I(yT ;fT ) = 1

2 log det(I + σ−2KXT ), with KXT being the kernel matrix, (KXT )i,j =
kNN(xi,xj). Using a similar notation for the kernel matrices of kP and kO, we may write

I(yT ;fT ) =
1

2
log det(I + σ−2(KP,XT +KO,XT ))

=
1

2
log det(I + σ−2KP,XT ) +

1

2
log det(I + (I + σ−2KP,XT )−1KO,XT )

(C.2)

We now separately bound the two terms. Let ΦD,T = [ΦD(x1), · · · ,ΦD(xT )]T , then by the mercer decomposi-
tion,

KP,XT = ΦD,TΛDΦT
D,T

Where ΛD is a diagonal matrix with the first D̃ eigenvalues. Let HT = Λ
1/2
D ΦT

D,TΦD,TΛ
1/2
D , by Weinstein-

Aronszajn identity,

1

2
log det(IT + σ−2KP,XT ) =

1

2
log det(I + σ−2HT )

≤ 1

2
D̃ log

(
tr(I + σ−2HT )/D̃

)
For positive definite matrices P ∈ Rn×n, we have log detP ≤ n log tr(P /n). The inequality follows from



Parnian Kassraie, Andreas Krause

ID + σ−2HT being positive definite. Plugging in the definition of HT

1

2
log det(IT + σ−2KP,XT ) ≤ 1

2
D̃ log

(
1 +

σ−2

D̃
tr(Λ

1/2
D ΦT

D,TΦD,TΛ
1/2
D )

)
≤ 1

2
D̃ log

(
1 +

σ−2

D̃

T∑
t=1

tr(Λ
1/2
D ΦTD(xt)ΦD(xt)Λ

1/2
D )

)
≤ 1

2
D̃ log

(
1 +

σ−2

D̃

T∑
t=1

||ΦD(xt)Λ
1/2||22

)
≤ 1

2
D̃ log

(
1 +

σ−2

D

T∑
t=1

D∑
k=0

µk

N(d,k)∑
j=1

Y 2
j,k(xt)

)
≤ 1

2
D̃ log

(
1 +

σ−2

D̃

T∑
t=1

kP (xt,xt)
)

≤ 1

2
D̃ log

(
1 +

σ−2T

D̃

)
The last inequality holds since the NTK is uniformly bounded by 1 on the unit sphere. We now bound the second
term in Equation C.2, which corresponds to the infinite-dimensional orthogonal space. Similar to the first term,
we bound log detP with n log tr(P /n),

1

2
log det(IT + (IT + σ−2KP,XT )−1KO,XT ) ≤ T

2
log
(

1 +
tr
(
(IT + σ−2KP,XT )−1KO,XT

)
T

)
≤ T

2
log
(

1 + tr
(
KO,XT

)
/T
) (C.3)

The second inequality holds due to (IT + σ−2KP,XT )−1 being positive definite, with eigenvalues smaller than 1.
We can bound the trace using the Mercer decomposition

tr
(
KO,XT

)
=

T∑
t=1

kO(xt,xt)

=

T∑
t=1

∞∑
k=D+1

µk

N(d,k)∑
j=1

Y 2
j,k(xt)

=

T∑
t=1

∞∑
k=D+1

µkN(d, k)Q
(d)
k (xTt xt)

where Q
(d)
k is the Gegenbauer polynomial of degree k and xt are on Sd−1. We have Q

(d)
K (1) = 1 which gives,

tr
(
KO,XT

)
= T

∞∑
k=D+1

µkN(d, k) (C.4)

Plugging in Equation C.4 in Equation C.3, the information gain can be bounded as,

I(yT ,fT ) ≤ D̃

2
log
(
1 +

T

σ2D̃

)
+
T

2
log
(
1 +

∞∑
k=D+1

µkN(d, k)
)

We now bound the second term using Bietti and Bach’s result on decay rate of µk. They show that there
exists a constant C1(d, L) such that µk ≤ C1k

−d. Using Stirling approximation, there exists C2 such that
N(d, k) ≤ C2k

d−2. Then,
∞∑

k=D+1

µkN(d, k) ≤ C(d, L)

∞∑
k=D+1

k−2
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We can simply bound the series
∞∑

k=D+1

k−2 ≤
∫ ∞
D

z−2dz =
1

D
.

Therefore, there exists there exists C(d, L) such that,

I(yT ,fT ) ≤ D̃

2
log
(
1 +

T

σ2D̃

)
+
T

2
log
(
1 +

C(d, L)

D

)
≤ D̃

2
log
(
1 +

T

σ2D̃

)
+
TC(d, L)

2D

(C.5)

Note that the first term is increasing with D̃. We pick D̃ such that the first term in Equation C.5 is dominant,

i.e. D̃ log
(
1 + T

σ2D̃

)
> TC(d,L)

D . Via Equation C.1 we get,

D̃ =
⌈( C(d, L)T

log(1 + σ−2T )

) d−1
d
⌉

The treatment above holds for any arbitrary sequence XT . Plugging in D̃ with Equation C.5, we then may write,

γT ≤
( C(d, L)T

log(1 + σ−2T )

) d−1
d

log
(

1 + σ−2T
( C(d, L)T

log(1 + σ−2T )

) d
d−1
)

which concludes the proof.

Proof of Proposition 5.2. The CNTK is Mercer by Lemma 5.1. Which implies that we may repeat the steps taken
in the proof of Theorem 3.1. To avoid confusion, we use the “bar” notation to indicate the convolutional equivalent
of the parameters that proof. The 2-layer CNTK and the NTK share the same eigenvalues. The eigenfunctions
of the CNTK also bounded by one over the hyper sphere. The only difference is that N̄(d, k) = N(d, k)/d, which
comes into effect for calculating tr(K̄O,XT ). For the CNTK we would have,

tr
(
K̄O,XT

)
= T

∞∑
k=D̄+1

µkN̄(d, k) = T

∞∑
k=D̄+1

µkN(d, k)/d

Equivalent to Equation C.5 we may write,

Ī(yT ,fT ) ≤ D̃

2
log
(
1 +

T

σ2D̃

)
+
TC(d, L)

2D̄d

where similar to the proof of Theorem 3.1, we have D̃ = Θ(D̄d−1). For the first term to be larger than the
second, D̃ has to be set to

D̃ =
⌈( C(d, L)T

d log(1 + σ−2T )

) d−1
d ⌉

which then concludes the proof.

C.2 Proof of Theorem 3.2

The proof closely follows the method in Srinivas et al. [42] and Krause and Ong [25], with modifications on the
assumptions on context domain and actions. The following lemmas will be used.

Lemma C.1. Let δ ∈ (0, 1), and set βt = 2 log(|A|πt/δ), where
∑
t>1 π

−1
t = 1 and πt > 0. Then with probability

of at least 1− δ
|f(zta)− µt−1(zta)| ≤

√
βtσt−1(zta), ∀a ∈ A, ∀t > 1.

Lemma C.2. Let σ2
t−1(xt) be the posterior variance, computed at xt = ztat, where at is the action picked by

the UCB policy. Then,

1

2

T∑
t=1

log(1 + σ−2σ2
t−1(xt)) ≤ γT
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Proof of Theorem 3.2. We use Lemma C.1, to bound the regret at step t. Let x∗t = zta
∗ denote the optimal

point, and xt = ztat be the maximizer of the UCB. Then by Lemma C.1, with probability of at least 1− δ we
have,

|f(xt)− µt−1(xt)| ≤
√
βtσt−1(xt)

|f(x∗t )− µt−1(x∗t )| ≤
√
βtσt−1(x∗t )

Therefore, by definition of xt (Equation 5) we can write:

rt = f(x∗t )− f(xt) ≤ µt−1(x∗t ) +
√
βtσt−1(x∗t )− f(xt)

≤ µt−1(xt) +
√
βtσt−1(xt)− f(xt)

≤ 2
√
βtσt−1(xt)

Then for regret over T steps, by Cauchy-Schwartz we have,

RT =

√√√√ T∑
t=1

rt ≤
√
T

√√√√ T∑
t=1

r2
t

≤
√
T

√√√√ T∑
t=1

4βtσ2
t−1(xt)

(C.6)

Recall that Lemma C.1, holds for any βt = 2 log(|A|πt/δ), where
∑
t>1 π

−1
t = 1. We pick πt = π2t2

6 , so that
βt is non-increasing and can be upper bounded by βT . This allows to reduce the problem of bounding regret
to the bounding the sum of posterior variances. By the definition of posterior variance (Equation 4), and since
kNN(x,x) ≤ 1,

σ−2σ2
t−1(xt) ≤ σ−2kNN(xt,xt) ≤ σ−2

For any r ∈ [0, a], it holds that r ≤ a log(1+r)
log(1+a) . Therefore,

σ−2σ2
t−1 ≤

σ−2

log(1 + σ−2)
log(1 + σ−2σ2

t−1)

Putting together the sum in Equation C.6 we get,

Rt ≤

√√√√4TβTσ2

T∑
t=1

σ−2σ2
t−1

≤

√√√√ 4TβTσ2

log(1 + σ−2)

T∑
t=1

log(1 + σ−2σ2
t−1)

≤

√
8σ2

log(1 + σ−2)

√
TβT γT

where the last inequality holds by plugging in Lemma C.2.

C.2.1 Proof of Lemma C.1

Proof. Fix t ≥ 1. Conditioned on yt−1 = (y1, · · · , yt−1), x1, · · · ,xt−1 are deterministic. The posterior distribu-
tion is f(x) ∼ N(µt−1(x), σ2

t−1(x)). Applying the sub-Gaussian inequality,

Pr[|f(x)− µt−1(x)| >
√
βtσt−1(x)] ≤ e−βt/2

A is finite and x = zta, then by union bound over S, the following holds with probability of at least 1−|A|e−βt/2,

|f(zta)− µt−1(zta)| ≤
√
βtσt−1(zta), ∀a ∈ A

It is only left to further apply a union bound over all t ≥ 1. For the statement in lemma to hold, βt has to be
set such that,

∑
t≥1 |A|eβt/2 ≤ δ. Setting βt = 2 log(|A|πt/δ) satisfies the condition.
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C.2.2 Proof of Lemma C.2

Proof. Recall that for a Gaussian random variable entropy is, H(N(µ,Σ)) = 1
2 log det(2πeΣ). Let yT be the

observed values and fT = [f(xt)]t≤T ∈ RT . We have yT = fT + εT , therefore, yT |fT ∼ N(0, Iσ2), and
yT |yT−1 ∼ N(µT−1, σ

2 + σ2
T−1(xT ))). By the definition of mutual information,

I(yT ;fT ) = H(yT )−H(yT |fT )

= H(yT−1) +H(yT |yT−1)− T

2
log(2πeσ2)

= H(yT−1) +
1

2
log(2πe(σ2 + σ2

T−1(xT )))− T

2
log(2πeσ2).

The first equality holds by the chain rule for entropy. By recursion,

γT ≥ I(yT ;fT ) =
1

2

T∑
t=1

log(1 + σ−2σ2
t−1(xt))

C.3 The Sup Variant and its Properties

Algorithm 1: GetPosterior

Input: Ψt ⊂ {1, · · · , t− 1}, zt
Initialize K ← [kNN(xi,xj)]i,j∈Ψt , Z

−1 ← (K + σ2I)−1, y ← [yi]
T
i∈Ψt

for a ∈ A do
Define x := zta,
k← [kNN(xi,x)]Ti∈Ψt

µ
(s)
t−1(x)← kTZ−1y

σ
(s)
t−1(x)←

√
kNN(x,x)− kTZ−1k

end

SupNTK-UCB combines NTK-UCB policy and Random Exploration, and at every step t, only uses a subset
of the previously observed context-reward pairs. These subsets are constructed such that the rewards in each are
statistically independent, conditioned on the contexts. Informally put, then the learner chooses an action either
if its posterior variance is very high or if the reward is close to the optimal reward. As more steps are played,
the criteria for closeness to optimal reward and high variance is refined. The method is given in Algorithm 2.
We give some intuition on the key elements to which the algorithm’s desirable properties can be credited.

• The set of indices of the context-reward pairs used for calculating µ
(s)
t−1 and σ

(s)
t−1, is denoted by Ψ

(s)
t . Once

an action is chosen, Ψ
(s)
t is updated to Ψ

(s)
t+1 for all s. Each set either grows by one member or remains the

same.

• For every level s, the set As includes a∗t the true maximizer of the reward with high probability. At every
step t we start with A1 which includes all the actions, and start removing actions which have a small UCB
and are unlikely to be a∗t .

• The UCB strategy is only used if the learner is certain about the outcome of all actions within As, i.e.

σ
(s)
t−1(zta) ≤ σ/

√
Tβt, for all a ∈ As. The context-reward pairs of these UCB steps are not saved for future

estimation of posteriors, i.e. Ψ
(s)
t+1 = Ψ

(s)
t .

• At step t, if there are actions a ∈ As for which
√
βtσ

(s)
t−1(zta) > σ2−s, then one is chosen at random, and

the set Ψ
(s)
t is updated with the index t, while all other sets remain the same.
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Algorithm 2: SupNTK-UCB Algorithm
T number of total steps, S = log T number of discretization levels

Initialize Ψ
(s)
1 ← ∅∀s ≤ S

for t = 1 to T do
m← 1, A1 ← A
while action at is not chosen do(

µ
(s)
t−1(zta), σ

(s)
t−1(zta)

)
← GetPosteriors

(
Ψ

(s)
t , zt

)
for all a ∈ As

if ∀a ∈ As,
√
βtσ

(s)
t−1(zta) ≤ σ√

T
then

Choose at = arg maxa∈As µ
(s)
t−1(zta) +

√
βtσ

(s)
t−1(zta).

Keep the index sets Ψ
(s′)
t+1 = Ψ

(s′)
t for all s′ ≤ S

end

else if ∀a ∈ As,
√
βtσ

(s)
t−1(zta) ≤ σ2−s then

Am+1 ←
{
a ∈ As

∣∣∣µ(s)
t−1(zta) +

√
βtσ

(s)
t−1(zta) ≥ maxa∈As µ

(s)
t−1(zta) +

√
βtσ

(s)
t−1(zta)− σ21−s

}
s← s+ 1

end
else

Choose at ∈ As such that
√
βtσ

(s)
t−1(ztat) > σ2−s.

Update the index sets at all levels s′ ≤ S,

Ψ
(s′)
t+1 =

{
Ψ

(s)
t+1 ∪ {t} if s′ = s

Ψ
(s)
t+1 otherwise

end

end

end

• The last case of the if statement in Algorithm 2 considers a middle ground, when the learner is not certain
enough to pick an action by maximizing the UCB, but for all a ∈ As posterior variance is smaller than
σ2−s/

√
βt. In this case, the level s is updated as s ← s + 1. In doing so, the learner considers a finer

uncertainty level, and updates its criterion for closeness to the optimal action.

• The parameter s discretizes the levels of uncertainty. For instance, in the construction of Ψ
(s)
t , the observed

context-reward pairs at steps t are essentially partitioned based on which [2−(s+1), 2−s] interval σ
(s)
t−1

belongs to. If for all s ≤ S,
√
βtσ

(s)
t−1 ≤ σ2−s, then that pair is disregarded. Otherwise, it is added to Ψ

(s)
t+1

with the smallest s, for which
√
βtσ

(s)
t−1 ≤ σ2−s. We set S = log T , ensuring that σ√

T
≤ σ2−S .

Properties of the SupNTK-UCB The construction of this algorithm guarantees properties that will later
facilitate the proof of a (

√
TγT ) regret bound. These properties are given formally in Lemma C.4 and Proposition

C.8, here we give an overview. SupNTK-UCB satisfies that for every t ≤ T and s ≤ S:

1. The true maximizer of reward remains within the set of plausible actions, i.e., a∗t ∈ As.

2. Given the context zt, regret of the actions a ∈ As, is bounded by 23−s,

with high probability over the observation noise. Let X(s) denote sequence of xτ with τ ∈ Ψ
(s)
t . Conveniently,

the construction of Ψ
(s)
t guarantees that,

3. Given X(s), the corresponding rewards y(s) are independent random variables and Eyτ = f(xτ ).

4. Cardinality of each uncertainty set |Ψ(s)
t |, is bounded by O(γT log T ).
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C.4 Proof of Theorem 3.3

Our proof adapts the technique in Valko et al. [45]. Consider the average cumulative regret given the inputs, by
property 3 of the algorithm we may write it as,

E[RT |XT ] =
∑
t∈Ψ̄

f(x∗t )− f(xt) +
∑

t∈[T ]/Ψ̄

f(x∗t )− f(xt)

where Ψ̄ := {t ≤ T | ∀s, t /∈ Ψ
(s)
T } includes the indices of steps with small posterior variance, i.e. σt(x) ≤ σ/

√
Tβt.

For bounding the first term, we use Azuma-Hoeffding to control f(x∗t )−f(xt), with σt(xt)C(B,
√
γT , βT ). Since

σt−1 is small for t ∈ Ψ̄, this term grows slower than O(
√
γTT ). We then use properties 2 and 4, to bound the

second term. Having bounded E[RT |XT ], we again use Azuma-Hoeffding, to give a bound on the cumulative
regret RT .

For this proof, we use both feature map and kernel function notation. Let Hk be the RKHS corresponding to
k and the sequence φ = (

√
λiφi)

∞
i=1, be an algebraic orthogonal basis for Hk, such that k(x,x′) = φT (x)φ(x′).

For f ∈ Hk and there exists a unique sequence θ, such that f = φTθ. If ‖f‖k ≤ B then ||θ|| ≤ B, since

||f ||2k =
∑
i

(〈f, φi〉)2

λi
=
∑
i

(〈
∑
j

√
λjθjφj , φi〉)2

λi
=
∑
i

θ2
i = ||θ||2

The following lemmas will be used to prove the theorem.

Lemma C.3. Fix s ≤ S, for any action a ∈ A, let x = zta. Then with probability of at least 1− 2|A|e−βT /2,

|µ(s)
t (x)− f(x)| ≤ σ(s)

t (x)
[
2
√
βt + σ

]
B.

Lemma C.4. For any t ≤ T , and s ≤ S, with probability greater than 1− 2|A| exp−βT /2,

1. a∗t ∈ As.

2. For all a ∈ As, given zt, f(x∗t )− f(x) ≤ 23−s

Lemma C.5. For any s ≤ S, the cardinality of Ψ
(s)
T is grows with T as follows,

|Ψ(s)
T | ≤ O

(
4sγT log T

)
Lemma C.6. Consider kNN defined on X ⊂ Sd−1, and its corresponding RKHS, HkNN

. Any f ∈ HkNN
where

‖f‖kNN
≤ B, is uniformly bounded by B over X .

Lemma C.7 (Azuma-Hoeffding Inequality). Let X1, · · · , XT be random variables with Xt ≤ at for some at > 0.

Then with probability greater than 1− 2 exp
(
−B2

2
∑
t a

2
t

)
,∣∣∑

t

Xt −
∑
t

E[Xt|X1, · · ·Xt−1]
∣∣ ≤ B

Proof of Theorem 3.3. Denote by Ht−1 the history of the algorithm at time t,

Ht−1 :=
{

(zi,ai, yi)
}
i<t
∪ zt

Define Xt = f(x∗t ) − f(xt). By Lemma C.6, f is bounded and we have |Xt| ≤ B. Then by applying Azuma-
Hoeffding (Lemma C.7) on the random variables X1, · · · , XT , with probability greater than 1− 2T |A|e−βT /2,

∣∣R(T )− E
[
R(T )|HT−1

]∣∣ ≤√2TB2 log(
1

T |A|e−βT /2
) (C.7)

We now use lemmas C.3, C.5, and C.4 to bound the growth rate of E
[
R(T )|Ht−1

]
. Recall Ψ̄ := {t ≤ T | ∀s, t /∈

Ψ
(s)
T }.

R(T ) =
∑

t∈[T ]/Ψ̄

f(x∗t )− f(xt) +
∑
t∈Ψ̄

f(x∗t )− f(xt) (C.8)
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Bounding the expectation of the first sum gives,∑
t∈[T ]/Ψ̄

E
[
f(x∗t )− f(xt)|Ht−1

]
=
∑
s≤S

∑
t∈Ψ

(s)
T

f(x∗t )− f(xt)

≤
∑
s≤S

23−s|Ψ(s)
T |

≤ 8S
√
βT (10 + σ−215)γTT log T

(C.9)

with a probability of at least 1 − 2ST |A|e−βT /2. The First equation holds by Prop. C.8, and the second

holds due to Lemma C.4. For the third, we have used the inequality in Lemma C.9 and that |Ψ(s)
T | ≤ T . We

now bound expectation of the second term in Equation C.8. By Lemma C.3, with probability of greater than
1− 2T |A|e−βT /2,∑

t∈Ψ̄

E
[
f(x∗t )− f(xt)|Ht−1

]
=
∑
t∈Ψ̄

f(x∗t )− f(xt)

(a)

≤
∑
t∈Ψ̄

µt(x
∗
t ) +

√
βtσt(x

∗
t ) +B(2

√
βt + σ)σt(x

∗
t )− f(xt)

(b)

≤
∑
t∈Ψ̄

µt(xt) +
√
βtσt(xt) +B(2

√
βt + σ)σt(x

∗
t )− f(xt)

(c)

≤
∑
t∈Ψ̄

√
βtσt(xt) +B(2

√
βt + σ)(σt(x

∗
t ) + σt(xt))

(d)

≤
∑
t∈Ψ̄

σ√
T

+ 2B(2 +
σ√
βT

)
σ√
T

≤ σ
√
T
(
1 + 2B(2 +

σ√
βT

)
)

(C.10)

For inequalities (a) and (c), we have used Lemma C.3, for x∗t and xt respectively. By Algorithm 2, if t ∈ Ψ̄,
then xt is the maximizer of the upper confidence bound, resulting in inequality (b). Lastly for inequality (d),

by construction of Ψ̄, we have that
√
βtσ

(s)
t−1(x) ≤ σ√

T
. We plug in in S = log T , βt = βT = 2 log(2T |A|/δ) and

substitute δ with δ/(1 + log T ). Putting together equations C.7, C.9, and C.10 gives the result.

C.4.1 Proof of Lemma C.3

SupNTK-UCB is constructed such that the proposition below holds immediately by the result in Valko et al.
[45].

Proposition C.8 (Lemma 6 Valko et al. [45]). Consider the SupNTK-UCB algorithm. For all t ≤ T , s ≤ S,

and for a fixed sequence of xt where t ∈ Ψ
(s)
t . The corresponding rewards yt are independent random variables,

and we have E[yt|xt] = f(xt).

Proof of Lemma C.3. Let k, K, and y be defined as they are in Algorithm 1, then by definition of φ,

µ
(s)
t (x) = kT (K + σ2I)−1y

= φT (x)(K + σ2I)−1ΦTy

= φT (x)(ΦTΦ + σ2I)−1ΦTy

(C.11)

where Φ = [φT (xi)]
T

i∈Ψ
(s)
t

. For simplicity let C = ΦTΦ + σ2I. Similarly for σ
(s)
t (x) we can write:

σ
(s)
t (x) =

√
φT (x)C−1φ(x)

=
√
φT (x)C−1(ΦTΦ + σ2I)C−1φ(x)

≥ ||ΦC−1φ(x)||

(C.12)
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Using Equation C.11, we get

µ
(s)
t (x)− f(x) = φT (x)(ΦTΦ + σ2I)−1ΦTy − φTθ

= φT (x)C−1ΦTy − φTC−1Cθ

= φT (x)C−1ΦT (y −Φθ)− σ2φT (x)C−1θ

(C.13)

We now bound the first term in Equation C.13. By Proposition C.8, conditioned on x and [xi]i∈Ψt , y−Φθ is a
vector of zero-mean independent random variables. By Lemma C.6, f is bounded. Similar to Valko et al. [45],

and without loss of generality, we may normalize the vector y over Ψ
(s)
t , and assume that yi ≤ B. Then, each

|yi − φT (xi)θ| ≤ 2B. By Equation C.12, and Azuma-Hoeffding (Lemma C.7), with probability greater than
1− 2 exp(−βT /2),

|φT (x)(ΦTΦ + σ2I)−1ΦT (y −Φθ)| ≤ 2B
√
βtσ

(s)
t (x) (C.14)

For the second term, by Cauchy-Schwartz we have,

σ2φT (x)(ΦTΦ + σ2I)−1θ = σ2φT (x)C−1θ

≤ Bσ2
√
φT (x)C−1σ−2σ2IC−1φ(x)

≤ Bσ
√
φT (x)C−1CC−1φ(x)

≤ Bσσ(s)
t (x)

(C.15)

The proof is concluded by plugging in Equations C.14 and C.15 into Equation C.13, and taking a union bound
over all |A| actions.

C.4.2 Proof of Other Lemmas

Proof of lemma C.4. We prove this lemma by showing the equivalent of NTK-UCB and Kernelized UCB
and refer to Lemma 7 in Valko et al. [45]. Consider the GP regression problem with gaussian observation noise,
i.e., yi = f(xi) + εi, with ε ∼ N (0, σ2), and f ∼ GP(0, k). Let φ(·) be the feature map of the GP’s covariance

kernel function k, i.e. k(x,x′) = φT (x)φ(x′). Denote µ
(GP)
t (·) as the posterior mean function, after observing t

samples of (xi, yi) pairs. Then, it is straightforward to show that, for all x ∈ X ,

µ
(GP)
t (x) = µ

(Ridge)
t (x)

Where µ
(Ridge)
t (x) = φT (x)θ∗, with θ∗ being the minimizer of the kernel ridge loss,

L(x) =

t∑
i=1

(yi − φT (xi)θ)2 + σ2||θ||2.

Similarly, let σ
(GP)
t (x) be the posterior variance function of the GP regression. Using classical matrix identities,

we can show that,

σ
(GP)
t (x) =

√
φT (x)(KT + σ2I)−1φ(x) = σ

(Ridge)
t (x)

Which is the width of confidence interval used in Kernelized UCB [45]. Their exploration policy is then
defined as,

x
(Ridge)
t = arg max

x∈X
µ

(Ridge)
t (x) +

β

σ
σ

(GP)
t (x).

We conclude that NTK-UCB and Kernelized UCB [45] are equivalent, up to a constant factor in exploration
coeficient β. We have modified SupKernelUCB to SupNTK-UCB such that the key lemmas still hold, and
Lemma C.4 immediately follows from Valko et al. [45]’s Lemma 7.

Proof of Lemma C.5. Let λi denote the eigenvalues of KT + σ2I, in decreasing order. Valko et al. define

d̃ := min
{
j : jσ2 log T ≥

∑
i≥j

λi − σ2
}
,
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and show that γT gives a data independent upper bound on d̃,

γT ≥ I(yT ;f) ≥ Ω(d̃ log log T )

Due to the equivalence of SupKernelUCB and SupNTK-UCB, as shown in the proof of lemma C.4, the
following lemma holds for SupNTK-UCB.

Lemma C.9 (Lemma 5, Valko et al. [45]). Let lT = max{log T, log(T/(σd̃))}. For all s ≤ S,

|Ψ(s)
T | ≤ 2s

√
βT (10 + 15σ−2)d̃|Ψ(s)

T |lT

By Lemma C.9, there exists T0 such that for all T > T0,

|Ψ(s)
T | ≤ 2s

√
βT (10 + 15σ−2)γT |Ψ(s)

T | log T .

Proof of Lemma C.6. By the Reproducing property of kNN, for any f ∈ HkNN
we have,

f(x) = 〈f, kNN(x, ·)〉HkNN
≤ ||f ||kNN

||kNN(x, ·)||kNN

where the inequality holds due to Cauchy-Schwartz. The NTK is Mercer over X , with the mercer decomposition
kNN =

∑
i λiφi. Then by definition of inner product in HkNN ,

||kNN(x, ·)||2k =
∑
i

〈kNN(x, ·), φi〉2

λi

=
∑
i

〈
∑
j λjφj(x)φj , φi〉2

λi

=
∑
i

λiφi(x)2

= kNN(x,x)

= 1

The second to last equality uses the orthonormality of φis, and the last equation follows from the definition of
the NTK. We have ‖f‖kNN

≤ B which concludes the proof.

D Details of NN-UCB and CNN-UCB

Algorithm 3 and 6 present NN-UCB, and its Sup variant, respectively. The construction of the Sup variant is
the same as for NTK-UCB, with minor changes to the conditions of the if statements.

D.1 Proof of Theorem 4.1

Throughout this section, To bound the regret for NN-UCB, we define an auxiliary algorithm that allows us
to use the result from NTK-UCB. Consider a kernelized UCB algorithm, which uses k̂ an approximation of
the NTK function, where k̂(·, ·) = gT (·;θ0)g(·;θ0)/m. We argued in the main text that this kernel can well

approximate kNN, and its feature map φ̂(x) = g(x;θ0)/
√
m can be viewed as a finite approximation of φ, the

feature map of the NTK. Throughout the proof, we denote the posterior mean and variance GP(0, k̂) by µ̂t−1

and σ̂t−1 respectively. In comparison to NN-UCB, we use µ̂t−1 instead of f (J) to approximate the true posterior
mean, however σ̂t−1 is the same as in NN-UCB. Using lemma D.3, we reduce the problem of bounding the regret
for NN-UCB to the regret of this auxiliary method. We then repeat the technique used for Theorem 3.3 on the
auxiliary Sup variant which yields a regret bound depending on γ̂T , the information gain of the approximate
kernel matrix. Finally, for width m large enough, we bound γ̂T with γT , information gain of the exact NTK
matrix.

The following lemma provides the grounds for approximating the NTK with the empirical gram matrix of the
neural network at initialization. Let G = [gT (xt;θ

0)]Tt≤T .
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Algorithm 3: NN-UCB
σ2 observation noise, βt exploration parameter, J number of GD Steps, η GD’s learning rate, m width of the
network, L depth of the network, T total steps of the bandit

Input: m, L, J, η, σ, βt, T
Initialize network parameters to a random θ0, Ẑ0 = σ2I

for t = 1 · · ·T do
Observe the context zt. for a ∈ A do

Define x := zta,
σ̂2
t−1(x)← gT (x;θ0)Ẑ−1

t−1g(x;θ0)/m
Ua,t ← f(x;θt−1) +

√
βtσ̂t−1(x)

end
at = arg maxa∈A Ua,t
Pick at and append the rewards vector yt by the observed reward.
Ẑt ← σ2I +

∑
i≤t g(xi;θ

0)gT (xi;θ
0)/m

θt ← TrainNN(m,L, J, η, σ2,θ0, [xi]i≤t,yt)
end

Algorithm 4: TrainNN(m,L, J, η, σ2,θ0, [xi]i≤t,yt)

Input: [xi]i≤t, yt

Define L(θ) =
∑
i∈Ψt

(f(xi;θ)− yi)2 +mσ2
∥∥θ − θ0

∥∥2

2

for j = 0, · · · , J − 1 do
θj+1 = θj − η∇L(θj)

end

Output: θJ

Lemma D.1 (Arora et al. [2] Theorem 3.1). Set 0 < δ < 1. If m = Ω(L6 log(TL/δ)/ε4), then with probability
greater than 1− δ, ∥∥GTG/m−KNN

∥∥
F
≤ Tε

This lemma will allow us to write the unknown reward as a linear function of the feature map over the finite set
of points that are observed while running the algorithm.

Lemma D.2 (Zhou et al. [49] Lemma 5.1). Let f∗ be a member of HkNN
with bounded RKHS norm ‖f‖kNN

≤ B.
If for some constant C,

m ≥ CT 4|A|4L6

λ4
0

log
(
T 2|A|L/δ

)
,

then for any δ ∈ (0, 1), there exists θ∗ ∈ Rp such that

f∗(xi) = 〈g(xi;θ0),θ∗〉,
√
m‖θ∗‖2 ≤

√
2B

with probability greater than 1− δ, for all i ≤ T |A|.

The following lemma acts as the link between NN-UCB and the auxiliary UCB algorithm.

Lemma D.3. Fix s ≤ S. Consider a given context set, {xτ}τ∈Ψ
(s)
t

. Assume construction of Ψ
(s)
t is such that

the corresponding rewards, yτ are statistically independent. Then there exists C1, such that for any δ > 0, if the
learning rate is picked η = C1(LmT +mσ2)−1, and

m ≥ poly
(
T, L, |A|, σ−2, log(1/δ)

)
.

Then with probability of at least 1− δ, for all i ≤ T |A|,

|f(xi;θ(J))− µ̂(s)(xi)| ≤ σ̂(s)(xi)

√
TB

mησ2

(
3 + (1−mησ2)J/2

)
+ C̄(

TB

mσ2
)2/3L3

√
m logm
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Algorithm 5: GetApproxPosterior
J number of GD Steps, η GD’s learning rate, m width of the network, L depth of the network

Input: Ψt ⊂ {1, · · · , t− 1}, zt
Initialize Ẑ ← σ2I +

∑
i∈Ψt

g(xi,θ
0)gT (xi,θ

0)/m

θ(GD) ← TrainNN(m,L, J, η, σ2,θ0, [xi]i∈Ψt , [yi]i∈Ψt)

for a ∈ A do
Define x := zta,

σ̂2
t−1(x)← gT (x,θ0)√

m
Ẑ−1 g(x,θ0)√

m

Output: f(x,θ(J)) and σ̂2
t−1(x)

end

for some constant C̄. Where µ̂(s) and σ̂(s) are the posterior mean and variance of GP(0, k̂), after observing
(xτ , yτ )

τ∈Ψ
(s)
t

.

The following lemma provides the central concentration inequality and is the Neural equivalent of Lemma C.3.

Lemma D.4 (Concentration of f and f (J), Formal). Fix s ≤ S. Consider a given context set, {xτ}τ∈Ψ
(s)
t

.

Assume construction of Ψ
(s)
t is such that the corresponding rewards, yτ are statistically independent. Let δ > 0,

η = C1(LmT +mσ2)−1, and

m ≥ poly
(
T, L, |A|, λ−1

0 , σ−2, log(1/δ)
)
.

Then for any action a ∈ A, and for some constant C̄ with probability of at least 1− 2|A|e−βT /2 − δ,

|f(x;θ(J))− f∗(x)| ≤ σ̂(s)(x)
(

2B
√
βT + σ

√
2

m
B +

√
TB

mησ2

(
3 + (1−mησ2)J/2

))
+ C̄(

TB

mσ2
)2/3L3

√
m logm

where x = zta.

Lemma D.5. If for any 0 < δ < 1

m = Ω
(
T 6L6 log(TL/δ)

)
,

then with probability greater than 1− δ
γ̂T ≤ γT + σ−2

We are now ready to give the proof.

Proof of Theorem 4.1. Construction of Ψ
(s)
t is the same in both Algorithm 6 and Algorithm 2. Hence, Proposition

C.8 immediately follows. It is straightforward to show that lemmas C.5, C.4, C.9 all apply to SupNN-UCB as
well. We consider them for the approximate feature map φ̂ and use lemma D.2 to write the unknown reward
f∗ = φT (x)θ∗ with high probability. By the union bound, all lemmas hold for the SupNN-UCB setting, with
a probability greater than 1− 2T |A|e−β/2 − δ for any 0 < δ < 1.

Recall Ht−1 is the history of the algorithm at time t,

Ht−1 :=
{

(zi, si, yi)
}
i<t
∪ zt

Similar to proof of Theorem 3.3, we apply the Azuma-Hoeffding bound (Lemma C.7) to the random variables,
Xt =: f∗(x∗t )− f∗(xt). We get, with probability greater than 1− 2T |A|e−βT /2,

∣∣R(T )− E
[
R(T )|HT−1

]∣∣ ≤√4T log(
1

T |A|e−βT /2
) (D.1)
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Algorithm 6: Sup variant for NN-UCB
T number of total steps, S = 2 log T number of discretization levels

Initialize Ψ
(s)
1 ← ∅, ∀s ≤ S

for t = 1 to T do
s← 1, A1 ← A
while action at not chosen do(

f(zta,θ
(GD)), σ̂

(s)
t−1(zta)

)
← GetApproxPosterior

(
Ψ

(s)
t , zt

)
for all a ∈ As

if ∀a ∈ As,
√
βtσ̂

(s)
t−1(zta) ≤ σ

T 2 then

Choose at = arg maxa∈As f(zta,θ
(GD))(zta) +

√
βtσ̂

(s)
t−1(zta),

Keep the index sets Ψ
(s′)
t+1 = Ψ

(s′)
t for all s′ ≤ S.

end

else if ∀a ∈ As,
√
βtσ̂

(s)
t−1(zta) ≤ σ2−s then

As+1 ←
{
a ∈ As

∣∣∣f(zta,θ
(GD))+

√
βtσ

(s)
t−1(zta) ≥ maxa∈As f(zta,θ

(GD))+
√
βtσ̂

(s)
t−1(zta)−σ21−s

}
s← s+ 1

end
else

Choose at ∈ As such that
√
βtσ̂

(s)
t−1(ztat) > σ2−s.

Update the index sets at all levels s′ ≤ S,

Ψ
(s′)
t+1 =

{
Ψ

(s)
t+1 ∪ {t} if s′ = s

Ψ
(s)
t+1 otherwise

end

end

end

We now bound E
[
R(T )|Ht−1

]
. Let Ψ̄ := {t ≤ T | ∀m, t /∈ Ψ

(m)
T }. By lemmas C.4 and C.9 applied to k̂ the

approximate kernel, with probability of at least 1− ST |A|E−βT /2,

E
[
R(T )|Ht−1

]
=
∑
all
t/∈Ψ̄

f∗(x∗t )− f∗(xt) +
∑
t∈Ψ̄

f∗(x∗t )− f∗(xt)

≤ 8S
√
βT (10 + σ−215)γ̂TT log T +

∑
t∈Ψ̄

f∗(x∗t )− f∗(xt)︸ ︷︷ ︸
I

,

where γ̂T is the information gain corresponding to the approximate kernel. Applying Lemma D.4, with probability
of greater than 1− 2T |A|e−βT /2,

I ≤
∑
t∈Ψ̄

(
σ̂(s)(xt) + σ̂(s)(x∗t )

)(
2B
√
βT + σ

√
2

m
B +

√
TB

mησ2

(
3 + (1−mησ2)J/2

))
+
√
βT σ̂

(s)(xt) + 2C̄(
TB

mσ2
)2/3L3

√
m logm

≤
∑
t∈Ψ̄

4B
σ

T 2
+

2σ2B

T 2

√
2

mβT
+ 2

√
B

mηβTT 2

(
3 + (1−mησ2)J/2

)
+ 2C̄(

TB

mσ2
)2/3L3

√
m logm

≤ 4B
σ

T
+ 2σ2B

√
2

mβTT 2
+ 2

√
B

mηβT

(
3 + (1−mησ2)J/2

)
+ 2C̄T (

TB

mσ2
)2/3L3

√
m logm
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The next to last inequality holds by construction of Ψ̄, and the last one by |Ψ̄| ≤ T . Set δ ≤ T |A|e−βT /2,
S = log T and choose m large enough according to the conditions of Theorem 4.1. Putting together the two
terms, we get

R(T ) ≤ 4B
σ

T
+ 2

√
B(TL+ σ2)

C1βT

(
3 + (1− σ2C1

TL+ σ2
)J/2

)
+ 8
√
βT (10 + σ−215)γ̂TT (log T )3 +

√
4T log(

1

T |A|e−βT /2
)

Choosing βt = βT = 2 log(2T |A|/δ̃), with probability greater than 1− (log T + 1)δ̃,

R(T ) ≤ 2(1 +B)
σ

T
+ 8

√
2 log(2T |A|/δ̃)

√
γ̂TT (log T )3(10 + σ−215)

+ 2

√
B(TL+ σ2)

2C1 log(2T |A|/δ̃)
(
3 + (1− σ2C1

TL+ σ2
)J/2

)
+ 2

√
T log(2/δ̃).

We conclude the proof by using Lemma D.5, to bound γ̂T with γT , and substitute δ̃ with δ̃/(1 + log T ).

Before giving the proof of the Lemmas, we present Condition D.6. Lemmas D.2 through D.5, often rely on
the width m being large enough, or the learning rate being small enough. For easier readability, we put those
inequalities together and present it at m satisfying a certain polynomial rate and η being of order 1/m.

Condition D.6. The following conditions on m and η, ensure convergence in Lemmas . For every t ≤ T ,

2
√
t/(mσ2) ≥ C1

[ mL

log(TL2|A|/σ2)

]−3/2

,

2
√
t/(mσ2) ≤ C2 min

{
L−6(logm)−3/2,

(
m(ησ2)2L−6t−1(logm)−1

)3/8}
,

η ≤ C3(mσ2 + tmL)−1,

m1/6 ≥ C4

√
logmL7/2(t/σ2)7/6(1 +

√
t/σ2)

setting

m ≥ poly
(
T, L, |A|, σ−2, log(1/δ)

)
,

η = C(mTL+mσ2)−1

satisfies all.

D.1.1 Proof of lemma D.3

We first give an overview of the proof. Recall that θ(J) is the result of running gradient descent for J steps on

L(θ) =
∑
i≤t

(f(xi;θ)2 − yi)2 +mσ2
∥∥θ − θ0

∥∥2

2
.

f(x;θ) is a complex nonlinear function, and it is hard to write what are the network parameters θj at a step
j of the gradient descent algorithm. Working with the first order Taylor expansion of the network around
initialization, 〈g(x;θ0),θ − θ0〉, we instead consider running the gradient descent on

L̃(θ) =
∑
i≤t

(
〈gT (xi;θ

0),θ − θ0〉 − yi
)2

2
+mσ2

∥∥θ − θ0
∥∥2

2
.

Let θ̃j denote the gradient descent update at step j. It can be proven that GD follows a similar path in both
scenarios, i.e. the sequences (θj)j>1 and (θ̃j)j>1 remain close for all j with high probability. Now gradient

descent on L̃ converges to the global optima, θ̃∗, for which we have 〈gT (xi;θ
0), θ̃∗ − θ0〉 = µ̂(x), concludeing

the proof.
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Proof. Let f(θ) = [f(xτ ;θ)]T
τ∈Ψ

(s)
t

, and y = [yτ ]
τ∈Ψ

(s)
t

. Consider the loss function used for training the network

L1(θ) = ‖f(θ)− y‖22 +mσ2‖θ‖22 (D.2)

And let the sequence of (θj) denote the gradient descent updates. The following lemma shows that at step j of the
GD, f(x;θj) can be approximated with its first order Taylor approximation at initialization, 〈g(x;θ0),θj −θ0〉.

Lemma D.7. There exists constants (Ci)i≤4, such that for any δ > 0, if η and m satisfy Condition D.6, then,∣∣f(xi;θJ)− f(xi;θ0)− 〈g(xi;θ0),θJ − θ0〉
∣∣ ≤ C(

TB

mσ2
)2/3L3

√
m logm

for some constant C with probability greater than 1− δ, for any i ≤ T |A|.

Lemma above holds, as m and η are chosen such that condition D.6 is met. We now show that 〈g(xi;θ0),θJ−θ0〉
approximates µ̂(s) well. Let

G = [gT (xτ ;θ0)]T
τ∈Ψ

(s)
t

,

Ẑ = σ2I +
∑

τ∈Ψ
(s)
t

g(xτ ;θ0)gT (xτ ;θ0)/m = σ2I +GTG/m.

Recall the loss function corresponding to the auxiliary UCB algorithm,

L2(θ) =
∥∥GT (θ − θ0)− y

∥∥2

2
+mσ2

∥∥θ − θ0
∥∥2

2
(D.3)

and define θ̃j to be the GD updates of L2. This optimization problem has nice convergence properties as stated
in lemma D.8.

Lemma D.8. Zhou et al. [49] Lemma C.4 If η, m satisfy conditions D.6, then∥∥∥θ̃j − θ0 − Ẑ−1GTy/m
∥∥∥

2
≤ (1− ηmσ2)j/2

√
2TB/(mσ2)∥∥∥θ̃j − θ0

∥∥∥
2
≤
√

TB

mσ2

with a probability of at least 1− δ, for any j ≤ J .

Furthermore, we can show that in space of θ, the path of gradient descent on L2 follows GD’s path on L1.
In other words, as the width m grows the sequences (θj)j≤J and (θ̃j)j≤J converge uniformly. This is given in
lemma D.9.

Lemma D.9. There exists constants (Ci)i≤4, such that for any δ > 0, if η and m satisfy Condition D.6, then,∥∥∥θJ − θ̃J∥∥∥
2
≤ 3

√
TB

mσ2

with probability greater than 1− δ.

We now have all necessary ingredients to finish the proof. For simplicity, here we denote g(x;θ0) by g. Applying
Cauchy-Schwartz inequality we have,

〈g,θJ − θ0〉 = 〈g,θJ − θ̃J〉+ 〈g, θ̃J − θ0〉

≤ ‖g‖Ẑ−1

∥∥∥θJ − θ̃J∥∥∥
Ẑ

+ 〈g, θ̃J − θ0〉

≤ 1
√
mη
‖g‖Ẑ−1

∥∥∥θJ − θ̃J∥∥∥
2

+ 〈g, θ̃J − θ0〉

≤ 3

∥∥∥∥ g√
m

∥∥∥∥
Ẑ−1

√
TB

mησ2
+ 〈g, θ̃J − θ0〉

(D.4)
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Recall that Ẑ = σ2L+GTG. By Lemma D.10, ‖G‖F ≤ C
√
TLm and we have,

Ẑ 4 (σ2 + CTLm)I 4
1

mη
I, (D.5)

since η is set such that η ≤ C(mσ2 + TLm)−1. Therefore, for any x ∈ Rp, ‖x‖Ẑ ≤
1√
mη‖x‖2, and follows the

second inequality. For the third inequality we have used Lemma D.9. Decomposing the second term of the right
hand side in equation D.4 we get,

〈g, θ̃J − θ0〉 = 〈g, Ẑb√
m
〉+ 〈g, θ̃J − θ0 − Ẑb√

m
〉

≤ g
T Ẑb√
m

+
1
√
η

∥∥∥∥ g√
m

∥∥∥∥
Ẑ−1

∥∥∥∥∥θ̃J − θ0 − Ẑb√
m

∥∥∥∥∥
2

≤ g
T Ẑb√
m

+

∥∥∥∥ g√
m

∥∥∥∥
Ẑ−1

√
2TB

mησ2
(1− ηmσ2)j/2

(D.6)

The first line holds by definition of µ̂(s)(x). The last line follows from the convergence of GD to L2, given in
Lemma D.8. By the definition of posterior mean and variance we have,

µ̂(s)(x) =
g(x;θ0)T Ẑb√

m

σ̂(s)(x) =

∥∥∥∥g(x;θ0)√
m

∥∥∥∥
Ẑ−1

.

The upper bound on f(x;θJ)− µ̂(s)(x) follows from plugging in Equation D.6 into Equation D.4, and applying
Lemma D.7. Similarly, for the lower bound we have,

−f(xi;θJ) ≤ 〈g,θ0 − θJ〉+ C(
TB

mσ2
)2/3L3

√
m logm (D.7)

〈g,θ0 − θ̃J〉 ≤ −µ̂(s)(x) + σ̂(s)(x)

√
2TB

mησ2
(1− ηmσ2)j/2 (D.8)

〈g, θ̃J − θJ〉 ≤ 3σ̂(s)(x)

√
TB

mησ2
(D.9)

Where inequality D.7 holds by Lemma D.7, and the next two inequalities are driven similarly to equations D.4
and D.6. The lower bound results by putting together equations D.7-D.9, and this concludes the proof.

D.1.2 Proof of Lemma D.4

Proof. Consider Lemma C.3, and substitute the approximate feature map φ̂(x) = g(x;θ0) for the NTK feature
map φ(x). For simplicity we denote g(x;θ0) by g. m is chosen such that lemma D.2 holds. Then, by lemma

C.3 applied to φ̂, with probability greater than 1− δ − 2|A|e−βT /2,

|µ̂(s)
t (x)− f∗(x)| = |gT (x)(GTG+ σ2I)−1GTy − gTθ∗|

≤ 2B
√
βtσ̂

(s)
t (x)− σ2gT (x)(GTG+ σ2I)−1θ∗

for any x = zta, s ∈ A. By Lemma D.2,
√
m‖θ∗‖2 ≤

√
2B, and plugging in Lemma D.3 concludes the proof.

D.1.3 Proof of Lemma D.5

Proof. We use some inequalities given in the proof of Lemma 5.4 Zhou et al. [49]. Consider an arbitrary sequence
(xt)t≤T . For the approximate feature map g(x;θ0)/

√
m, recall the definition of information gain after observing

T samples,

Ig =
1

2
log det

(
I + σ−2GTG

T
T /m

)
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where GT = [g(xt;θ
0)]Tt≤T ∈ RT×p. Let [KNN]i,j≤T = kNN(xi,xj) with k the NTK function of the fully-

connected L-layer network.

Ig =
1

2
log det

(
I + σ−2KNN + σ−2(GTG

T
T /m−KNN)

)
(a)

≤ 1

2
log det

(
I + σ−2KNN

)
+ 〈(I + σ−2KNN)−1, σ−2(GTG

T
T /m−KNN)〉

≤ Ik + σ−2
∥∥(I + σ−2KNN)−1

∥∥
F

∥∥GTG
T
T /m−KNN

∥∥
F

(b)

≤ Ik + σ−2
√
T
∥∥GTG

T
T /m−KNN

∥∥
F

(c)

≤ Ik + σ−2T
√
Tε

(d)

≤ γT + σ−2.

(D.10)

Inequality (a) holds by concavity of log det(·). Inequality (b) holds since I 4 I + σ−2KNN. Inequality (c) holds
due to Lemma D.1. Finally, inequality (d) arises from the choice of m. Equation D.10 holds for any arbitrary
context set, thus it also holds for the sequence which maximizes the information gain.

D.1.4 Proof of Other Lemmas in Section D.1

Proof of Lemma D.7. Let m, η satisfy the first two conditions in the lemma. By Cao and Gu [10] Lemma
4.1, if

∥∥θJ − θ0
∥∥

2
≤ τ , then∣∣f(xi;θJ)− f(xi;θJ)− 〈g(xi;θ0),θJ − θ0〉

∣∣ ≤ Cτ4/3L3
√
m logm.

Under the given conditions however, Lemma B.2 from Zhou et al. [49] holds and we have,

∥∥θJ − θ0
∥∥

2
≤ 2

√
TB

mσ2
.

Proof of lemma D.8. This proof repeats proof of lemma C.4 in Zhou et al. [49] and is given here for com-
pleteness. L2 is mσ2-strongly convex, and C(TmL+mσ2)-smooth, since

∇2L2 = GTG+mσ2I ≤ (‖G‖22 +mσ2)I ≤ C(tmL+mσ2)I,

where the inequality follows from lemma D.10. It is widely known that gradient descent on smooth strongly
convex functions converges to optima given that the learning rate is smaller than the smoothness coefficient
inversed. Moreover, the minima of L2 is unique and has the closed form

θ̃∗ = θ0 + Ẑ−1GTy/m

Having set η ≤ C(tmL+mσ2)−1, we get that θ̃j converges to θ̃∗ with exponential rate,∥∥∥θ̃j − θ0 − Ẑ−1GTy/m
∥∥∥2

2
≤ (1− ηmσ2)j

2

mσ2
(L2(θ0)− L2(θ̃∗))

≤ 2(1− ηmσ2)j

mσ2
‖y‖22

≤ 2TB(1− ηmσ2)j

mσ2
.

Second inequality holds due to L2 ≥ 0. From the RKHS assumption, the true reward is bounded by B and hence

the last inequality follows from |Ψ(s)
t | ≤ T . Strong Convexity of L2, guarantees a monotonic decrease of the loss
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and we have,

mσ2
∥∥∥θ̃J − θ̃0

∥∥∥2

2
≤ mσ2

∥∥∥θ̃J − θ̃0
∥∥∥2

2
+
∥∥∥GT (θ̃J − θ̃0)− y

∥∥∥2

2

≤≤ mσ2
∥∥∥θ̃0 − θ̃0

∥∥∥2

2
+
∥∥∥GT (θ̃0 − θ̃0)− y

∥∥∥2

2

≤ ‖y‖22
≤ TB

Proof of lemma D.9. Choose m, η such that they satisfy condition D.6. By lemma B.2 Zhou et al. [49],∥∥θJ − θ0
∥∥

2
≤ 2
√
TB/(mσ2). ∥∥∥θJ − θ̃J∥∥∥

2
≤
∥∥θJ − θ0

∥∥
2

+
∥∥∥θ̃J − θ̃0

∥∥∥
2

≤ 3

√
TB

mσ2
.

Where the second inequality holds by Lemma D.8.

Lemma D.10. Consider the fixed set {xi}i≤t of inputs. Let G = [gT (xi;θ
0)]Ti≤t, where g shows the gradients

of a L-layer feedforward network of width m at initialization.There exists constants (Ci)i≤4 such that if for any
δ > 0, m satisfies condition D.6, then, with probability greater than 1− δ.

‖G‖F ≤ C
√
tmL

for some constant C.

Proof of Lemma D.10. From Lemma B.3 Cao and Gu [10], we have
∥∥g(xi;θ

0)
∥∥

2
≤ C̄
√
mL with high prob-

ability. By the definition of Frobenius norm, it follows,

‖G‖F ≤
√
tmax
i≤t

C
∥∥g(xi;θ

0)
∥∥

2
≤ C
√
tmL

D.2 Proof of Theorem 5.4

This proof will closely follow the proof of Theorem 4.1, with small adjustments to the condition on m. We
begin by giving intuition on why this is the case. In this section, m refers to the number of channels of the
convolutional network. Recall that,

f̄(x;θ) := fCNN(x;θ) =
1

d

d−1∑
l=0

fNN(cl · x;θ).

For simplicity in notation, from now on we will refer to fNN(x;θ) just as f(x;θ) and use a “bar” notation to
refer to the convolutional counterpart of a variable, to emphasize that the 2-layer convolutional network is the
average of the 2-layer fully-connected taken over all circular shifts of the input. In section B.3 we presented that

k̄(x,x′) = kCNN(x,x′) :=
1

d

d−1∑
l=0

kNN(cl · x,x′),

and it is straight-forward to show that

ḡ(x;θ0) := ∇θfCNN(x;θ0) =
1

d

d−1∑
l=0

g(x;θ0)



Neural Contextual Bandits without Regret

where the vector θ0 is referring to the same set of parameter in both case. Starting with an identical initialization,

and running gradient descent on the `2 regularized LSE loss will of course cause θ̄(J) := θ
(J)
CNN and θ(J) not to be

equal anymore, but we can still show that θ̄(J) and θ0 are close as it was in the fully connected case. Similarly,
we can show that ḡ faces a small change during training with Gradient Descent. We will now present the
lemmas needed for proving Theorem 5.4. These lemmas are equivalents of lemmas in Section D.1 repeated for
the convolutional network. Convergence of the gram matrix to the CNTK is only proven in the m → ∞ limit,
hence some statements are weaker with respect to the condition on m, compared to the equivalent lemma under
the fully-connected setting.

Lemma D.11 (Convolutional variant of Lemma D.1). Let Ḡ = [ḡT (xt;θ
0)]Tt≤T and K̄ = [k̄(xi,xj)]i,j≤T . For

any ε > 0, there exists M such that for every m ≥M ,∥∥ḠT Ḡ/m− K̄
∥∥
F
≤ Tε

Lemma D.12 (Convolutional variant of Lemma D.2). Let f∗ be a member of HkCNN
with bounded RKHS norm

‖f‖kCNN
≤ B. Then there exists M such that for every m ≥M , there is a θ∗ ∈ Rp that satisfies

f∗(xi) = 〈ḡ(xi;θ0),θ∗〉,
√
m‖θ∗‖2 ≤

√
2B

for all i ≤ T |A|.
Lemma D.13 (Convolutional variant of Lemma D.3). Fix s ≤ S. Consider a given context set, {xτ}τ∈Ψ

(s)
t

.

Assume construction of Ψ
(s)
t is such that the corresponding rewards, yτ are statistically independent. Then there

exists C1, such that for any δ > 0, if the learning rate is picked η = C1(LmT +mσ2)−1, and

m ≥ poly
(
T, L, |A|, σ−2, log(1/δ)

)
.

Then with probability of at least 1− δ, for all i ≤ T |A|,

|f̄(xi; θ̄(J))− ˆ̄µ(s)(xi)| ≤ ˆ̄σ(s)(xi)

√
TB

mησ2

(
3 + (1−mησ2)J/2

)
+ C̄(

TB

mσ2
)2/3L3

√
m logm

for some constant C̄. Where ˆ̄µ(s) and ˆ̄σ(s) are the posterior mean and variance of GP(0, K̂CNN), after observing
(xτ , yτ )

τ∈Ψ
(s)
t

.

Lemma D.14 (Convolutional variant of D.4). Fix s ≤ S. Consider a given context set, {xτ}τ∈Ψ
(s)
t

. Assume

construction of Ψ
(s)
t is such that the corresponding rewards, yτ are statistically independent. Let δ > 0 and

η = C1(LmT + mσ2)−1. Then, there exists M such that for all m ≥ M , for any action a ∈ A, and for some
constant C̄ with probability of at least 1− 2|A|e−βT /2 − δ,

|f̄(x; θ̄(J))− f∗(x)| ≤ ˆ̄σ(s)(x)
(

2B
√
βT + σ

√
2

m
B +

√
TB

mησ2

(
3 + (1−mησ2)J/2

))
+ C̄(

TB

mσ2
)2/3L3

√
m logm

where x = zta.

Lemma D.15 (Convolutional variant of Lemma D.5). There exists M such that for all m ≥M ,

ˆ̄γT ≤ γ̄T + σ−2

Proof of Theorem 5.4. Repeating the proof of Theorem 4.1, and plugging in Lemmas D.11 through D.15 instead
of Lemmas D.1-D.5 concludes the result.

D.2.1 Proof of Lemmas in Section D.2

Proof of Lemma D.11. From Arora et al. [2], we have that for any x, x′ on the hyper-sphere, with probability
one,

lim
m→∞

〈ḡ(x;θ), ḡ(x′;θ)〉 = kCNN(x,x′).
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In other words, for every ε > 0, there exists M such that for all m ≥M , with probability one,

|〈ḡ(x;θ), ḡ(x′;θ)〉 − kCNN(x,x′)| ≤ ε

Recall that Ḡ = [ḡT (xt;θ
0)]Tt≤T . Let Ml denote the number of channels that satisfies the equation above for the

l-th pairs of (xi,xj), where i, j ≤ T . Setting

M = max
l≤(2

T)
Ml

will ensure that each two elements of ḠT Ḡ/m and K̄ are closer than ε. The proof is concluded by the definition
of Frobenius norm.

Proof of Lemma D.12. This proof closely tracks the proof of Lemma 5.1 in Zhou et al. [49]. Consider Lemma
D.11 and let ε = λ0/(2TK), where λ0 > 0 is the smallest eigenvalue of K̄. Then with probability one, we have∥∥ḠT Ḡ− K̄

∥∥
F
≤ λ0/2. Therefore,

ḠT Ḡ < K̄ −
∥∥ḠT Ḡ− K̄

∥∥
F
I < K̄ − λ0I/2 < K̄/2 � 0 (D.11)

where the first inequality is due to the triangle inequality. This implies that Ḡ is also positive definite.
Suppose Ḡ = PAQT , with A � 0. Setting θ∗ = PA−1QTf∗ satisfies the equation in the lemma, where
f∗ = [f∗(xi)]i≤T |A|. Moreover,

m‖θ∗‖22 = (f∗)TQA−2Qf∗ = (f∗)T (ḠT Ḡ)−1f∗ ≤ 2f∗K̄−1f∗ = ‖f∗‖2kCNN

where the last inequality holds by Equation D.11. By the assumption on reward, ‖f∗‖ ≤ B which completes the
proof.

Proof of Lemma D.13. It suffices to show that Lemmas D.7, D.8, and D.9 hold for the convolutional variant,
and the proof follows by repeating the steps taken in proof of Lemma D.3. We start by showing that lemma D.8
still applies. Consider the convolutional variant of the auxiliary loss,

L̄2(θ) =
∥∥ḠT (θ̄ − θ0)− y

∥∥2

2
+mσ2

∥∥θ̄ − θ0
∥∥2

2
. (D.12)

Let (˜̄θj) to denote the gradient descent updates. The loss L̄2 is also strongly convex, which allows us to repeat
the proof for the convolutional equivalent of the parameters. We conclude that Lemma D.8 still holds. By
Lemma 4.1 Cao and Gu [10], if

∥∥θ̄(J) − θ0
∥∥ ≤ τ , then,∣∣f̄(xi; θ̄J)− f̄(xi; θ̄J)− 〈ḡ(xi;θ0), θ̄J − θ0〉

∣∣ ≤ Cτ4/3L3
√
m logm.

To prove Lemma D.7, it remains to show that
∥∥θ̄(J) − θ0

∥∥ ≤ 2
√
TB/(mσ2). Recall that ḡ(x;θ0) is equal to

g(cl ·x;θ0) averaged over all cl. Therefore all inequalities that bound a norm of g(x;θ0) uniformly for all x ∈ X ,
carry over to ḡ(x;θ0) and it is straightforward to show that Lemma B.2 from Zhou et al. [49] also holds in
the convolutional case, which completes the proof for convolutional variant of Lemma D.7. From the triangle
inequality, and by Lemma D.8 we also get that∥∥∥θ̄J − ˜̄θJ

∥∥∥
2
≤ 3

√
TB

mσ2

which proves Lemma D.9 under convolutional setting.

Proof of Lemma D.14. We may repeat the proof for Lemma D.4 and use Lemma D.12 and D.13 when needed,
instead of Lemmas D.2 and D.3 respectively.

Proof of Lemma D.15. The proof repeats the proof of Lemma D.5. To make it applicable to the CNTK, only
one step has to be modified, and that is inequality (d) of Equation D.10. This inequality still holds, but this
time by Lemma D.11.


