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function when it is a sample from GP(0, kNN). This
result may be of independent interest, as this quantity
is integral to sequential decision making approaches.

Related Work This work is inspired by Zhou
et al. (2020) who introduce the idea of training a
neural network within a UCB style algorithm. They
analyze Neural-UCB, which bears many similarities
to NN-UCB. Relevant treatments of the regret are
given by Gu et al. (2021); Yang et al. (2020), ZHANG
et al. (2021), and Ban and He (2021) for other neural
contextual bandit algorithms. However, as discussed
in Section 4, these approaches do not generally
guarantee sublinear regret, unless further restrictive
assumptions about the context are made. In addition,
there is a large literature on kernelized contextual
bandits. Closely related to our work are Krause and
Ong (2011) and Valko et al. (2013) who provide regret
bounds for kernelized UCB methods, with Bayesian
and Frequentist perspectives respectively. Srinivas
et al. (2010) are the first to tackle the kernelized ban-
dit problem with a UCB based method. Many have
then proposed variants of this algorithm, or improved
its convergence guarantees under a variety of settings
(Berkenkamp et al., 2021; Bogunovic et al., 2020; Ca-
landriello et al., 2019; Chowdhury and Gopalan, 2017;
Djolonga et al., 2013; Kandasamy et al., 2019; Mutnỳ
and Krause, 2019; Scarlett, 2018). The majority of
the bounds in this field are expressed in terms of the
maximum information gain, and Srinivas et al. (2010)
establish a priori bounds on this parameter. Their
analysis only holds for smooth kernel classes, but has
since been extended to cover more complex kernels
(Janz et al., 2020; Scarlett et al., 2017; Shekhar
et al., 2018; Vakili et al., 2021a). In particular, Vakili
et al. (2021a) introduce a technique that applies to
smooth Mercer kernels, which we use as a basis for
our analysis of the NTK’s maximum information gain.
In parallel to UCB methods, online decision making
via Thompson Sampling is also extensively studied
following Russo and Van Roy (2016).

Our work further builds on the literature linking wide
neural networks and Neural Tangent Kernels. Cao
and Gu (2019) provide important results on train-
ing wide fully-connected networks with gradient de-
scent, which we extend to 2-layer convolutional neural
networks (CNNs). Through a non-asymptotic bound,
Arora et al. (2019) approximate a trained neural net-
work by the posterior mean of a GP with the NTK as
its covariance function. Bietti and Bach (2021) study
the Mercer decomposition of the NTK and calculate
the decay rate of its eigenvalues, which plays an in-
tegral role in our analysis. Little is known about the
properties of the Convolutional Neural Tangent Kernel
(CNTK), and the extent to which it can be used for

approximating trained CNNs. Bietti (2022) and Mei
et al. (2021) are among the first to study this kernel
by investigating its invariance towards certain groups
of transformations, which we draw inspiration from.

Contributions Our main contributions are:

• To our knowledge, we are the first to give an
explicit sublinear regret bound for a neural
network based UCB algorithm. We show that
NN-UCB’s cumulative regret after a total of T
steps is Õ(T (2d�1)/2d), for any arbitrary context
sequence on the d-dimensional hyper-sphere.
(Theorem 4.2)

• We introduce CNN-UCB, and prove that when
the number of channels is large enough, it
converges to the optimal policy at the same rate
as NN-UCB. (Theorem 5.4)

The Õ notation omits the terms of order log T or
slower. Along the way, we present intermediate results
that may be of independent interest. In Theorem 3.1
we prove that �T , the maximum information gain for
the NTK after T observations, is Õ(T (d�1)/d). We in-
troduce and analyze NTK-UCB and CNTK-UCB,
two kernelized methods with sublinear regret (Theo-
rems 3.2 & 3.3) that can be used in practice or as a the-
oretical tool. Theorems 3.1 through 3.3 may provide
an avenue for extending other kernelized algorithms to
neural network based methods.

2 Problem Statement

Contextual bandits are a model of sequential decision
making over T rounds, where, at step t, the learner
observes a context matrix zt, and picks an action at

from A, the finite set of actions. The context matrix
consists of a set of vectors, one for each action, i.e.,
zt = (zt,1, · · · , zt,|A|) 2 Rd⇥|A|. The learner then re-
ceives a noisy reward yt = f(xt) + ✏t. Here, the input
to the reward function is the context vector associated
with the chosen action, i.e., xt = ztat 2 Rd, where at

is represented as a one-hot vector of length |A|. Then
the reward function is defined as f : X ! R, where
X ✓ Rd denotes the input space. Observation noise
is modeled with ✏t, an i.i.d. sample from a zero-mean
sub-Gaussian distribution with variance proxy �2 > 0.
The goal is to choose actions that maximize the cu-
mulative reward over T time steps. This is analogous
to minimizing the cumulative regret, the di↵erence
between the maximum possible (context-dependent)
reward and the actual reward received, RT =P

T

t=1 f(x
⇤

t
)�f(xt), where xt is the learner’s pick and
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x
⇤

t
is the maximizer of the reward function at step t

x
⇤

t
= argmax

x=zta,a2A

f(x).

The learner’s goal is to select actions such that
RT /T ! 0 as T ! 1. This property implies that the
learner’s policy will converge to the optimal policy.

2.1 Assumptions

Our regret bounds require some assumptions on the
reward function f and the input space X . Through-
out this work, we assume that A is finite and X is
a subset of Sd�1 the d-dimensional unit hyper-sphere.
We consider two sets of assumptions on f ,

• Frequentist Setting: We assume that f is an ar-
bitrary function residing in HkNN the RKHS that
is reproducing for the NTK, and has a bounded
kernel norm, kfk

kNN
 B.

• Bayesian Setting: We assume that f is a sample
from a zero-mean Gaussian process, that uses the
NTK as its covariance function, GP(0, kNN).

These assumptions are broad, non-parametric and im-
ply that f is continuous on the hyper-sphere. Both
the Bayesian and the Frequentist setting impose cer-
tain smoothness properties on f via kNN. Technically,
the function class addressed by each assumption has
an empty intersection with the other. Appendix B.1
provides more insight into the connection between the
two assumptions. We require a mild Su�cient Explo-
ration assumption on the kernel matrix, exclusive to
the results in Sections 4 and 5. This is presented later,
under Assumption 4.1.

2.2 The Neural Tangent Kernel

We review important properties of the NTK as
relied upon in this work. Training very wide neural
networks has similarities to estimation with kernel
methods using the NTK. For now, we will focus on
fully-connected feed-forward ReLU networks and
their corresponding NTK. In Section 5, we extend
our result to networks with one convolutional layer.
Let f(x;✓) : Rd ! R be a fully-connected network,
with L hidden layers of equal width m, and ReLU
activations, recursively defined as follows,

f (1)(x) = W
(1)

x,

f (l)(x) =

r
2

m
W

(l)�relu

�
f (l�1)(x)

�
2 Rm, 1 < l  L

f(x;✓) =
p
2W (L+1)�relu

�
f (L)(x)

�
2 R.

The weights W
(i) are initialized to random ma-

trices with standard normal i.i.d. entries, and

✓ = (W (i))iL+1. Let g(x;✓) = r✓f(x;✓) be the
gradient of f . Assume that given a fixed dataset,
the network is trained with gradient descent using an
infinitesimally small learning rate. For networks with
large width m, training causes little change in the
parameters and, respectively, the gradient vector. For
any x, x0 2 X , and as m tends to infinity, a limiting
behavior emerges: hg(x;✓), g(x0;✓)i/m, the inner
product of the gradients, remains constant during
training and converges to kNN(x;x0), a deterministic
kernel function (Arora et al., 2019; Jacot et al., 2018).
This kernel satisfies the conditions of Mercer’s Theo-
rem over Sd�1 with the uniform measure (Cao et al.,
2021) and has the following Mercer decomposition,

kNN(x,x
0) =

1X

k=0

µk

N(d,k)X

j=1

Yj,k(x)Yj,k(x
0), (1)

where Yj,k is the j-th spherical harmonic polynomial
of degree k, and N(d, k) denotes the algebraic mul-
tiplicity of µk. In other words, each µk corresponds
to a N(d, k) dimensional eigenspace, where N(d, k)
grows with kd�2. Without loss of generality, assume
that the distinct eigenvalues µk are in descending
order. Bietti and Bach (2021) show that there exists
an absolute constant C(d, L) such that

µk ' C(d, L)k�d. (2)

Taking the algebraic multiplicity into account, we
obtain that the decay rate for the complete spectrum
of eigenvalues is of polynomial rate k�1�1/(d�1). This
decay is slower than that of the kernels commonly used
for kernel methods. The eigen-decay for the squared
exponential kernel is O(exp(�k1/d)) (Belkin, 2018),
and Matérn kernels with smoothness ⌫ > 1/2 have a
O(k�1�2⌫/d) decay rate (Santin and Schaback, 2016).
The RKHS associated with kNN is then given by

HkNN =
n
f : f =

X

k�0

N(d,k)X

j=1

�j,kYj,k, (3)

X

k�0

N(d,k)X

j=1

�2
j,k

µk

< 1
o
.

Equation 3 explains how the eigen-decay of k controls
the complexity of Hk. Only functions whose coef-
ficients �j,k decay at a faster rate than the kernel’s
eigenvalues are contained in the RKHS. Therefore, if
the eigenvalues of k decay rapidly, Hk is more limited.
The slow decay of the NTK’s eigenvalues implies that
the assumptions on the reward function given in Sec-
tion 2.1 are less restrictive compared to what is often
studied in the kernelized contextual bandit literature.
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Problem Setting. Actions
at 2 A

one-hot vector of length |A|
Contexts

yt = f(xt) + ✏t

Cumulative Regret

RT =
TX

t=1

f(x⇤
t )� f(xt)

X ✓ Sd�1

f : unknown, f 2 HkNN , where kNN: the Neural Tangent Kernel.

✏t : �
2 sub-Gaussian, i.i.d.

At every step 1  t  T
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R(T ) = Õ(C2(d , L)T
2d�1
2d ).

minimum eigenvalue of the kernel matrix

3

Problem Setting. Actions
at 2 A

one-hot vector of length |A|  1
Contexts

yt = f(xt) + ✏t

Cumulative Regret

RT =
TX

t=1

f(x⇤
t )� f(xt)

X ✓ Sd�1

f : unknown, f 2 HkNN , where kNN: the Neural Tangent Kernel.

✏t : �
2 sub-Gaussian, i.i.d.

At every step 1  t  T
The learner’s goal:

This implies convergence to an optimal policy.

CNN Stu↵.

�T,CNN = Õ
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Reward model assumption

Connection between the NTK and the CNTK

2-Layer convolutional network is invariant to circular shifts.
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R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Pier Giuseppe Sessa, Ilija Bogunovic, Andreas Krause, and Maryam Kamgarpour. Contextual games: Multi-
agent learning with side information. Advances in Neural Information Processing Systems, 33, 2020.

Shubhanshu Shekhar, Tara Javidi, et al. Gaussian process bandits with adaptive discretization. Electronic
Journal of Statistics, 12(2):3829–3874, 2018.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, page 1015–1022, Madison, WI, USA, 2010.
Omnipress. ISBN 9781605589077.

Yanan Sui, Vincent Zhuang, Joel Burdick, and Yisong Yue. Stagewise safe Bayesian optimization with Gaussian
processes. In Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4781–4789. PMLR, 2018.

Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in gaussian process
bandits. In International Conference on Artificial Intelligence and Statistics, pages 82–90. PMLR, 2021a.

Sattar Vakili, Jonathan Scarlett, and Tara Javidi. Open problem: Tight online confidence intervals for rkhs
elements. In Conference on Learning Theory, pages 4647–4652. PMLR, 2021b.
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Comparison with Prior Work The Neural-
UCB algorithm introduced by Zhou et al. (2020) bears
resemblance to our method. At step t, NN-UCB
approximates the posterior variance via Equation 7
with g(·;✓0), a fixed feature map. Neural-UCB,
however, updates the feature map at every step t,
by using g(·;✓t�1), where ✓t�1 is defined as before.
E↵ectively, Zhou et al. adopt a GP prior that
changes with t. Under additional assumptions on
f and for � � max{1, B�1}, they show that for
Neural-UCB, a guarantee of the following form
holds with probability greater than 1� �.

RT  Õ
⇣p

TI(yT ;fT )
⇥
�
p

I(yT ;fT ) + 1� log �

+
p
T (� +

TL

�
)
�
1� �2

TL

�J/2

+ �B
⇤⌘

The bound above is data-dependent via I(yT ;fT ) and
in this setting, the only known way of bounding the in-
formation gain is through �T . The treatment of regret
given in Yang et al. (2020) and ZHANG et al. (2021)
also results in a bound of the form Õ(

p
T�T ). How-

ever, the maximum information gain itself grows as
Õ(T (d�1)/d) for the NTK covariance function. There-
fore, without further assumptions on the sequence of
contexts, the above bounds are vacuous. In contrast,
our regret bounds for NN-UCB are sublinear without
any further restrictions on the context sequence. This
follows from Theorem 3.1 and Theorem 4.2:

Corollary 4.4. Under the conditions of Theorem 4.2,
for arbitrary sequences of contexts, with probability
greater than 1� �, SupNN-UCB satisfies,

R(T ) = Õ(CNN(d, L)T
2d�1
2d ).

The coe�cient CNN(d, L) in Corollary 3.4 and 4.4
denotes the same constant. Figures 1 and 2 in
Appendix A plot the information gain and regret
obtained for NN-UCB when used on the task of
online MNIST classification.

5 Extensions to Convolutional Neural
Networks

So far, regret bounds for contextual bandits based on
convolutional neural networks have remained elusive.
Below, we extend our results to a particular case of 2-
layer convolutional networks. Consider a cyclic shift cl
that maps x to cl ·x = (xl+1, xl+2, · · · , xd, x1, · · · , xl).
We can write a 2-layer CNN, with one convolutional
and one fully-connected layer, as a 2-layer NN that is

averaged over all cyclic shifts of the input

fCNN(x;✓) =
p
2

mX

i=1

vi
h1
d

dX

l=1

�relu(hwi, cl · xi)
i

=
1

d

dX

l=1

fNN(cl · x;✓).

Let Cd denote the group of cyclic shifts {cl}ld.
Then the 2-layer CNN is Cd-invariant, i.e.,
fCNN(cl · x) = fCNN(x), for every cl. The cor-
responding CNTK is also Cd-invariant and can be
viewed as an averaged NTK

kCNN(x,x
0) =

1

d2

dX

l, l0=1

kNN(cl · x, cl0 · x0)

=
1

d

dX

l=1

kNN(x, cl · x0).

(8)

The second equality holds because kNN(x,x0) depends
on its arguments only through the angle between
them. In Appendix B.3, we give more intuition about
this equation via the random feature kernel formula-
tion (Chizat et al., 2019; Rahimi and Recht, 2008).
Equation 8 implies that the CNTK is a Mercer kernel
and in Lemma 5.1 we give its Mercer decomposition.
The proof is presented in Appendix B.4.

Lemma 5.1. The Convolutional Neural Tangent Ker-
nel corresponding to fCNN(x;✓), a 2-layer CNN with
standard Gaussian weights, can be decomposed as

kCNN(x,x
0) =

1X

k=0

µk

N̄(d,k)X

j=1

Ȳj,k(x)Ȳj,k(x
0)

where µk ' C(d, L)k�d. The algebraic multiplic-
ity is N̄(d, k) ' N(d, k)/d, and the eigenfunctions
{Ȳj,k}jN̄(d,k) form an orthonormal basis for the space

of Cd-invariant degree-k polynomials on Sd�1.

With this lemma, we show that the 2-layer CNTK has
the same distinct eigenvalues as the NTK, while the
eigenfunctions and the algebraic multiplicity of each
distinct eigenvalue change. The eigenspaces of the
NTK are degree-k polynomials, while for the CNTK,
they shrink to Cd-invariant degree-k polynomials.
This reduction in the dimensionality of eigenspaces
results in a smaller algebraic multiplicity for each
distinct eigenvalue.

Information Gain We begin by bounding the
maximum information gain �̄T , when the reward
function is assumed to be a sample from GP(0, kCNN).
Proposition 5.2 establishes that the growth rate of �̄T
matches our result for maximum information gain of

Guarantees for the Convolutional Neural Bandit

Parnian Kassraie, Andreas Krause

Comparison with Prior Work The Neural-
UCB algorithm introduced by Zhou et al. (2020) bears
resemblance to our method. At step t, NN-UCB
approximates the posterior variance via Equation 7
with g(·;✓0), a fixed feature map. Neural-UCB,
however, updates the feature map at every step t,
by using g(·;✓t�1), where ✓t�1 is defined as before.
E↵ectively, Zhou et al. adopt a GP prior that
changes with t. Under additional assumptions on
f and for � � max{1, B�1}, they show that for
Neural-UCB, a guarantee of the following form
holds with probability greater than 1� �.

RT  Õ
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We can write a 2-layer CNN, with one convolutional
and one fully-connected layer, as a 2-layer NN that is

averaged over all cyclic shifts of the input

fCNN(x;✓) =
p
2

mX

i=1

vi
h1
d

dX

l=1

�relu(hwi, cl · xi)
i

=
1

d

dX

l=1

fNN(cl · x;✓).

Let Cd denote the group of cyclic shifts {cl}ld.
Then the 2-layer CNN is Cd-invariant, i.e.,
fCNN(cl · x) = fCNN(x), for every cl. The cor-
responding CNTK is also Cd-invariant and can be
viewed as an averaged NTK

kCNN(x,x
0) =

1

d2

dX

l, l0=1

kNN(cl · x, cl0 · x0)

=
1

d

dX

l=1

kNN(x, cl · x0).

(8)

The second equality holds because kNN(x,x0) depends
on its arguments only through the angle between
them. In Appendix B.3, we give more intuition about
this equation via the random feature kernel formula-
tion (Chizat et al., 2019; Rahimi and Recht, 2008).
Equation 8 implies that the CNTK is a Mercer kernel
and in Lemma 5.1 we give its Mercer decomposition.
The proof is presented in Appendix B.4.

Lemma 5.1. The Convolutional Neural Tangent Ker-
nel corresponding to fCNN(x;✓), a 2-layer CNN with
standard Gaussian weights, can be decomposed as

kCNN(x,x
0) =

1X

k=0

µk

N̄(d,k)X

j=1

Ȳj,k(x)Ȳj,k(x
0)

where µk ' C(d, L)k�d. The algebraic multiplic-
ity is N̄(d, k) ' N(d, k)/d, and the eigenfunctions
{Ȳj,k}jN̄(d,k) form an orthonormal basis for the space

of Cd-invariant degree-k polynomials on Sd�1.

With this lemma, we show that the 2-layer CNTK has
the same distinct eigenvalues as the NTK, while the
eigenfunctions and the algebraic multiplicity of each
distinct eigenvalue change. The eigenspaces of the
NTK are degree-k polynomials, while for the CNTK,
they shrink to Cd-invariant degree-k polynomials.
This reduction in the dimensionality of eigenspaces
results in a smaller algebraic multiplicity for each
distinct eigenvalue.

Information Gain We begin by bounding the
maximum information gain �̄T , when the reward
function is assumed to be a sample from GP(0, kCNN).
Proposition 5.2 establishes that the growth rate of �̄T
matches our result for maximum information gain of
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their result to our setting where we consider `2 reg-
ularized loss and noisy samples. It remains to ap-
proximate the posterior variance. Recall from Sec-
tion 2.2 that the NTK is the limit of hg(x), g(x0)i/m
as m ! 1, where g(·) is the gradient of the net-
work at initialization. This property hints that for
a wide network, g/

p
m can be viewed as substitute for

�, the infinite-dimensional feature map of the NTK,
since kNN(x,x0) = h�(x),�(x0)i. By re-writing �t�1

in terms of � and substituting � with g/
p
m, we get

�̂2
t�1(x) =

g
T (x)p
m

⇣
�2

I +
t�1X

i=1

g
T (xi)g(xi)

m

⌘�1 g(x)p
m

.

At the beginning, NN-UCB initializes the network
parameters to ✓

0. Then at step t, �̂t�1(·) is calculated
using g(·,✓0) and the action is chosen via maximizing
the approximate UCB

xt = argmax
x=zta,a2A

f (J)(x;✓t�1) +
p

�t�̂t�1(x)

where ✓t�1 is obtained by training f(·;✓0), for J steps,
with gradient descent on the data observed so far.
This algorithm essentially trains a neural network for
estimating the reward and combines it with a random
feature model for estimating the variance of the re-
ward. These random features arise from the gradient
of a neural network with random Gaussian parameters.
The pseudo-code to NN-UCB is given in Appendix
D. In Appendix A.3, we assess the ability of the
approximate UCB criterion to quantify uncertainty in
the reward via experiments on the MNIST dataset.

Regret Bound Similar to Theorem 3.3, we make
the RKHS assumption on f and establish a regret
bound on the Sup variant of NN-UCB. To do so,
we need two further technical assumptions. Follow-
ing Zhou et al. (2020), for convenience we assume that
f(x;✓0) = 0, for any x = zta where t  T and a 2 A.
As explained in Appendix B.2, this requirement can
be fulfilled without loss of generality.

Assumption 4.1 (Su�cient Exploration). The kernel
matrix is bounded away from zero, i.e., �0I 4 KT .

This assumption is common within the literature
(Arora et al., 2019; Cao and Gu, 2019; Du et al., 2019;
Zhou et al., 2020) and is satisfied as long as the learner
su�ciently explores the input space, such that no two
inputs xt and xt0 are identical. Further, a weaker ver-
sion of it is often required to hold for the kernel ma-
trix in the sparse linear bandits literature (Bastani and
Bayati, 2020; Hao et al., 2020; Kim and Paik, 2019).

Theorem 4.2. Let � 2 (1, 0). Suppose f lies in the
RKHS of kNN with kfk

kNN
 B. Samples of f are ob-

served with zero-mean sub-Gaussian noise of variance

proxy �2. Set J > 1 and �t = 2 log(2T |A|/�) constant.
Choose the width such that

m � poly
�
T, L, |A|,��2, B,��1

0 , log(1/�)
�
,

and ⌘ = C(LmT + m�2)�1 with some universal con-
stant C. Then, with probability greater than 1� �, the
regret of SupNN-UCB satisfies

R(T ) = O
⇣p

T
⇣p

�T��2(log T )3 log(T log T |A|/�)

+ �B
⌘⌘

.

The pseudo-code of SupNN-UCB and the proof are
given in Appendix D. The key idea there is to show
that given samples with noisy rewards, members of
Hk are well estimated by the solution of gradient
descent on the `2 regularized LSE loss. The following
lemma captures this statement.

Lemma 4.3 (Concentration of f and f (J), simplified).
Consider the setting of Theorem 4.2 and further as-
sume that the rewards {yi}i<t are independent condi-
tioned on the contexts {xi}i<t. Let 0 < � < 1 and
set m, �t and ⌘ according to Theorem 4.2. Then, with
probability greater than 1� 2e��T /2 � �,

|f (J)(xt)� f(xt)|  �̂t�1(xt)
p

�T Poly(B,m, t, L, ⌘)

Theorem 4.2 shows that SupNN-UCB obeys the
same regret guarantee as SupNTK-UCB. In the
theorem, the asymptotic growth of the regret is given
for large enough m, and terms that are o(1) with
T are neglected. To compare the two algorithms in
more detail, we revisit the bound for a fixed m. With
a probability greater than 1� �,

RT O
⇣p

T�T
p

��2(log T )3 log (T log T |A|/�)

+

✓
1 + �

q
(m log(T log T |A|/�))�1

◆
�B

p
T

+ L3

✓
TB

m�2

◆5/3 p
m3 logm

+

p
B(1�m⌘�2)J/2p

m⌘ log(T log T |A|/�)

⌘
.

The last two terms, which vanish for su�ciently large
m, convey the error of approximating GP inference
with NN training: The fourth term is the gradient
descent optimization error, and the third term is a
consequence of working with the linear first order
Taylor approximation of f(x;✓). The first two terms,
however, come from selecting explorative actions, as
in the regret bound of NTK-UCB (Theorem 3.3).
The first term denotes regret from random exploration
steps, and the second presents the regret at the steps
for which the UCB policy is used to pick actions.

the (C)NN trained for J steps of gradient descent on
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Problem Setting. Actions
at 2 A

one-hot vector of length |A|  1
Contexts

yt = f(xt) + ✏t

Cumulative Regret

RT =
TX

t=1

f(x⇤
t )� f(xt)

X ✓ Sd�1

f : unknown, f 2 HkNN , where kNN: the Neural Tangent Kernel.

✏t : �
2 sub-Gaussian, i.i.d.

At every step 1  t  T
The learner’s goal:

This implies convergence to an optimal policy.

CNN Stu↵.

�T,CNN = Õ
 
C1(d, L)

✓
T

d

◆ d�1
d

!
.

f 2 HkCNN

kfkkCNN
 B

When restricted to Sd�1, the NTK is described by (µk,Fd,k)k�0 a sequence of
eigenvalue eigenspace pairs. Here, the k-th eigenspace is spanned by degree-k poly-
nomials. For the CNTK however, the k-th eigenspace is spanned by polynomials
that are invariant to circular shifts. Searching through this shrunken RKHS gives
us improved rates for CNN-UCB.

µ̂t�1(x) = f (J)(x;✓t�1)

g(x) = r✓f(x;✓
(0))

xt = argmax
x=zta,a2A

µ̂t�1(x) +
p
�t�̂t�1(x)
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Approximate the variance of reward with

Pick actions by maximizing the approximate Upper Confidence Bound

Information Gain

Info Gain

Theorem (Information Gain Bound, Informal)

Then the maximum information gain associated with the NTK of a
fully-connected ReLU network is bounded by

�T ,NN = Õ

⇣
C1(d , L)T

d�1
d

⌘

2

"t : �
2 sub-Gaussian

f : unknown

R(T )/T = Õ
✓
CNN(d, L)

d
d�1
2d

T
�1
2d

◆

R(T )/T = Õ
⇣
CNN(d, L)T

�1
2d

⌘

w ⇤ x =
dX

l=1

hw, cl · xi

�T = Õ
 
CNN (d, L)

✓
T

d

◆ d�1
d

!

fCNN(x;W ,v) =
1

d

mX

i=1

vi �relu(wi ⇤ x) =
1

d

dX

l=1

fNN(cl · x;W ,v)

kCNN(x,x
0) =

1

d

dX

l=1

kNN(x, cl · x0).(0.1)

k

Hk

RT  Õ
⇣
I(yT ;fT )

p
T
⌘

I(yT ;fT ) = Õ
⇣
T

d�1
d

⌘

kNN kCNN

(µk,Fd,k)
�
µk, F̄d,k

�

dim
�
F̄d,k

�

dim (Fd,k)
=

1

d

k � 0

�T = max
x1,··· ,xT

I(yT ;fT )

fT =
⇣
f(x1), · · · , f(xT )

⌘

yT = (y1, · · · , yT )

RT /T = Õ(T
d�2
2d )
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3 Warm-up: NTK-UCB – Kernelized
Contextual Bandits with the NTK

Our first step will be to analyze kernelized bandit algo-
rithms that employ the NTK as the kernel. In partic-
ular, we focus on the Upper Confidence Bound (UCB)
exploration policy (Srinivas et al., 2010). Kernelized
bandits can be interpreted as modeling the reward
function f via a Bayesian prior, namely a Gaussian
process GP(0, k) with covariance function given by k.
At each step t, we calculate the posterior mean and
variance µt�1(·) and �t�1(·), using the samples ob-
served at previous steps. For i.i.d. N (0,�2) noise,
the posterior GP has a closed form expression,

µt�1(x) = k
T

t�1(x)(Kt�1 + �2
I)�1

yt�1 (4)

�2
t�1(x) = k(x,x)� k

T

t�1(x)(Kt�1 + �2
I)�1

kt�1(x)

where yt�1 = [yi]i<t is the vector of received rewards,
kt�1(x) = [k(x,xi)]i<t, and Kt�1 = [k(xi,xj)]i,j<t

is the kernel matrix. We then select the action by
maximizing the UCB,

xt = argmax
x=zta,a2A

µt�1(x) +
p

�t�t�1(x). (5)

The acquisition function balances exploring uncertain
actions and exploiting the gained information via pa-
rameter �t which will be detailed later. Our method
NTK-UCB, adopts the UCB approach, and uses kNN

as the covariance kernel function of the GP for calcu-
lating the posteriors in Equation 4.

3.1 Information Gain

The UCB policy seeks to learn about f quickly, while
picking actions that also give big rewards. The
speed at which we learn about f is quantified by
the maximum information gain. Assume that for a
sequence of inputs XT = (x1, · · · ,xT ), the learner
observes noisy rewards yT = (y1, . . . , yT ), and let
fT = (f(x1), . . . , f(xT )) be the corresponding true
rewards. Then the information gain is defined as
the mutual information between these random vectors,
I(yT ;fT ) := H(yT )�H(yT |fT ), where H denotes the
entropy. Assuming the GP prior f ⇠ GP(0, kNN), and
in the presence of i.i.d. Gaussian noise,

I(yT ;fT ) =
1

2
log det(I + ��2

KT )

with the kernel matrix KT = [kNN(xi,xj)]i,jT . Fol-
lowing Srinivas et al. (2010), we will express our regret
bounds in terms of the information gain. The informa-
tion gain depends on the sequence of points observed.
To obtain bounds for arbitrary context sequences, we
work with the maximum information gain defined as

�T := maxXT I(yT ;fT ). By bounding I(yT ;fT ) with
�T , we obtain regret bounds that are independent of
the input sequence.

Many regret bounds in this literature, including ours,
are of the form Õ(

p
T�T ) or Õ(

p
T�T ). For such a

bound not to be vacuous, i.e., for it to guarantee con-
vergence to an optimal policy, �T must grow strictly
sub-linearly with T . Our first main result is an a priori
bound on �T for Neural Tangent Kernels correspond-
ing to fully-connected networks of depth L.

Theorem 3.1. Suppose the observation noise is
i.i.d., zero-mean and a Gaussian of variance �2 >
0, and the input domain X ⇢ Sd�1. Then the
maximum information gain associated with the NTK
of a fully-connected ReLU network is bounded by

�T = O
✓⇣

C(d,L)T
log(1+ T

�2 )

⌘ d�1
d

log
⇣
1 + T

�2

⇣
C(d,L)T
log(1+ T

�2 )

⌘ d�1
d
⌘◆

The parameter �T arises not only in the bandit
setting, but in a broad range of related sequential
decision making tasks (Berkenkamp et al., 2021; Kan-
dasamy et al., 2016; Kirschner et al., 2020; Kirschner
and Krause, 2019; Sessa et al., 2019, 2020; Sui et al.,
2018). Theorem 3.1 might therefore be of independent
interest and facilitate the extension of other kernelized
algorithms to neural network based methods. When
restricted to Sd�1, the growth rate of �T for the NTK
matches the rate for a Matérn kernel with smoothness
coe�cient of ⌫ = 1/2, since both kernels have the
same rate of eigen-decay (Chen and Xu, 2021). Srini-
vas et al. (2010) bound �T for smooth Matérn kernels
with ⌫ � 1, and Vakili et al. (2021a) extend this
result to ⌫ > 1/2. From this perspective, Theorem 3.1
pushes the previous literature one step further by
bounding the information gain of a kernel with the
same eigen-decay as a Matérn kernel with ⌫ = 1/2.1

Proof Idea Beyond classical analyses of �T , addi-
tional challenges arise when working with the NTK,
since it does not have the smoothness properties re-
quired in prior works. As a consequence, we directly
use the Mercer decomposition of the NTK (Eq. 1) and
break it into two terms, one corresponding to a kernel
with a finite-dimensional feature map, and a tail sum.
We separately bound the information gain caused by
each term. From the Matérn perspective, we are able
to extend the previous results, in particular due to
our treatment of the Mercer decomposition tail sum.
An integral element of our approach is a fine-grained
analysis of the NTK’s eigenspectrum over the hyper-

1Under the assumption that f ⇠ GP(0, k) with the co-
variance function a Matérn ⌫ = 1/2, Shekhar et al. (2018)
give a dimension-type regret bound for a tree-based bandit
algorithm. Their analysis however, is not in terms of the
information gain, due to the structure of this algorithm.
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bounds in terms of the information gain. The informa-
tion gain depends on the sequence of points observed.
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result to ⌫ > 1/2. From this perspective, Theorem 3.1
pushes the previous literature one step further by
bounding the information gain of a kernel with the
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tional challenges arise when working with the NTK,
since it does not have the smoothness properties re-
quired in prior works. As a consequence, we directly
use the Mercer decomposition of the NTK (Eq. 1) and
break it into two terms, one corresponding to a kernel
with a finite-dimensional feature map, and a tail sum.
We separately bound the information gain caused by
each term. From the Matérn perspective, we are able
to extend the previous results, in particular due to
our treatment of the Mercer decomposition tail sum.
An integral element of our approach is a fine-grained
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Its maximum depends only on the domain, the noise and the kernel function 

It often appears in bandit regret bounds and quantifies the speed at which the
agent learns about the reward function. It is the mutual information between
the observed reward and true reward values. H denotes the entropy.

We propose two algorithms, NN-UCB and CNN-UCB.
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C1(d, L)

✓
T

d

◆ d�1
d

!
.

f 2 HkCNN

kfkkCNN
 B

References

[1] Alberto Bietti and Francis Bach. Deep equals shallow for relu networks in kernel regimes. arXiv preprint
arXiv:2009.14397, 2020.

[2] Lin Chen and Sheng Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. arXiv preprint
arXiv:2009.10683, 2020.

[3] Andreas Krause and Cheng S Ong. Contextual gaussian process bandit optimization. In Advances in neural
information processing systems, pages 2447–2455, 2011.

[4] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Je↵rey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

[5] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in neural
information processing systems, pages 1177–1184, 2008.

[6] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.
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CNN-UCB benefits from a shift-invariant structure. 
Our results suggest that for a high-dimensional input it outperforms NN-UCB.

Comparison to prior work: [2] are the first to introduce neural contextual
bandits. They provide a guarantee roughly of the form

We resolve the open problem of proving sublinear regret bounds for general
context sequences, considering both fully-connected and convolutional nets.

We show that our algorithms converge to the optimal policy
in polynomial time with high probability.

Contextual Bandits are rich models for online decision-making problems where
an agent sequentially interacts with an unknown, responsive environment and
receives a reward.

How can an agent leverage the experssive power of neural networks to learn
the reward function and eventually converge to an optimal action selection
policy?

We propose algorithms that employ (convolutional) neural networks to
estimate the reward, and provably attain sublinear regret.


