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Related Work. Our work extends the rich toolbox of methods for kernelized bandits and Bayesian
optimization (BO) that work under the norm bounded Reproducing Kernel Hilbert Space assumption
[37, 14, 42, 12]). The majority of these methods are designed for general Euclidean domains and
rely on kernelized confidence sets to select which action to query next. The exception is [43], that
consider the spectral setting in which the reward function is a linear combination of the eigenvectors
of the graph Laplacian and the bandit problem is defined over nodes of a single graph. In contrast,
our focus is on optimizing over graph domains (i.e., set of graphs), and constructing confidence sets
that can quantify the uncertainty of graph neural networks estimates.

This work contributes to the literature on neural bandits, in which a fully-connected [45, 44, 19],
or a single hidden layer convolutional network [25] is used to estimate the reward function. These
works provide sublinear cumulative regret bounds in their respective settings, however, when applied
directly to graph features (as we demonstrate in Section 4.3), these approaches do not scale well with
the number of graph nodes.

Due to its important applications in molecule design, sequential optimization on graphs has recently
received considerable attention. For example, in [28], the authors propose a kernel to capture
similarities between graphs, and at every step, select the next graph through a kernelized random
walk. Other works (e.g., [17, 18, 23, 38]) encode graph representations to the (continuous) latent
space of a variational autoencoder and perform BO in the latent space. While practically relevant for
discovering novel molecules with optimized properties, these approaches lack theoretical guarantees
and deem computationally demanding.

A primary focus in our work is on embedding the natural structure of the data, i.e., permutation
invariance, into the reward model. This is inspired by the works of [6, 32] that consider invariances
in kernel-based supervised learning. Consequently, the graph neural tangent kernel plays an integral
role in our theoretical analysis. Du et al. [15] provide a recursive expression for the tangent kernel
of a GNN, without showing that the obtained expression is the limiting tangent kernel as defined
in Jacot et al. [21] (i.e., as in Eq. (3)). In contrast, we analyze the learning dynamics of the GNN
and properties of the GNTK by exploiting the connection between the structure of a graph neural
network and that of a neural network (in Section 3). We recover that the graph neural tangent kernel
also encodes additivity. Additive models for bandit optimization have been previously studied in [24]
and [35], however, these works only focus on Euclidean domains and standard base kernels.

Finally, we build upon the recent literature on elimination-based algorithms that make use of maximum
variance reduction sampling [13, 8, 7, 9, 40, 30]. One of our proposed algorithms, GNN-PE, employs
a phased elimination strategy together with our GNN confidence sets.

Main Contributions. We introduce a bandit problem over graphs and propose to capture prior
knowledge by modeling the unknown reward function using a permutation invariant additive kernel.
We establish a key connection between such kernel assumptions and the graph neural tangent kernel
(Proposition 3.2). By exploiting this connection, we provide novel statistical confidence bounds
for the graph neural network estimator (Theorem 4.2). We further prove that a phased elimination
algorithm that uses our GNN-confidence bounds (GNN-PE) achieves sublinear regret (Theorem 4.3).
Importantly, our regret bound scales favorably with the number of graphs and is independent of
the number of graph nodes (see Table 1). Finally, we empirically demonstrate that our algorithm
consistently outperforms baselines across a range of problem instances.

2 Problem Statement

We consider a bandit problem where the learner aims to optimize an unknown reward function via
sequential interactions with a stochastic environment. At every time step t 2 {1, . . . , T}, the learner
selects a graph Gt from a graph domain G and observes a noisy reward yt = f⇤(Gt) + ✏t, where f⇤ :
G ! R is the reward function and ✏t is i.i.d. zero-mean sub-Gaussian noise with known variance proxy
�2. Over a time horizon T , the learner seeks a small cumulative regret RT =

P
T

t=1 f
⇤(G⇤)�f⇤(Gt),

where G⇤ 2 argmaxG2G f⇤(G). The aim is to attain regret that is sublinear in T , meaning that
RT /T ! 0 as T ! 1, which implies convergence to the optimal graph. As an example application,
consider drug or material design, where molecules may be represented with graph structures (e.g.,
from SMILES representations [1]) and the reward f⇤(G) can correspond to an unknown molecular
property of interest, e.g., atomization energy. Evaluating such properties typically requires running
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Can you use GNNs to efficiently maximize such functions on such domains?

Problem Setting
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costly simulations or experiments with noisy outcomes. To identify the most promising candidate,
e.g., the molecule with the highest atomization energy, molecules are sequentially recommended for
testing and the goal is to find the optimal molecule with the least number of evaluations.

Graph Domain. We assume that the domain G is a finite set of undirected graphs with N nodes.1
Without exploiting structure, standard bandit algorithms (e.g., [3]) cannot generalize across graphs,
and their regret linearly depends on |G|. To capture the structure, we consider reward functions de-
pending on features associated with the graph nodes. Similar to Du et al. [15], we associate each node
j 2 [N ] with a feature vector hG,j 2 Rd, for every graph G 2 G. We use hG = (hG,j)Nj=1 2 RNd

to denote the concatenated vector of all node features, and N (j) as the neighborhood of node j,
including itself. We define the aggregated node feature h̄G,j =

P
i2N (j) hG,i/||

P
i2N (j) hG,i||2 as

the normalized sum of the neighboring nodes’ features. Similarly, h̄G 2 RNd denotes the aggregated
features, stacked across all nodes. Lastly, we let PN be the group of all permutations of length N ,
and use c ·G to denote a permuted graph, where a permutation c 2 PN is a bijective mapping from
{1, . . . , N} onto itself. Permuting the nodes of a graph c · G produces a permuted feature vector
hc·G := (hG,c(j))

N

j=1, and the same holds for the aggregated features h̄c·G .

Reward Model. Practical graph optimization problems, such as drug discovery and materials
optimization often do not depend on how the graphs’ nodes in the dataset are ordered. We incorporate
this structural prior into modeling the reward function, and consider functions that are invariant to
node permutations. We assume that f⇤ depends on the graph only through the aggregated node
features and gives the same reward for all permutations of a graph, i.e., f⇤(c ·G) = f⇤(G), for any
G 2 G and c 2 PN . To guarantee such an invariance, we assume that the reward belongs to the
reproducing kernel Hilbert space (RKHS) corresponding to a permutation invariant kernel

k̄(G,G0) =
1

|PN |2
X

c,c02PN

k(h̄c·G, h̄c0·G0),

where k can be any kernel defined on graph representations h̄G. This assumption further restricts
the hypothesis space to permutation invariant functions defined on Nd–dimensional vector repre-
sentations of graphs. This is due to the reproducing property of the RKHS which allows us to write
f(G) = hf, k̄(G, ·)i = hf, k̄(c ·G, ·)i = f(c ·G). To make progress when optimizing over graphs
with a large number of nodes N , we assume that k decomposes additively over node features, i.e.,

k(h̄G, h̄G0) =
1

N

NX

j=1

k(j)(h̄G,j , h̄G0,j).

Thereby, we obtain an additive graph kernel that is invariant to node permutations:

k̄(G,G0) =
1

|PN |2
X

c,c02PN

1

N

NX

j=1

k(j)(h̄G,c(j), h̄G0,c0(j)). (1)

For an arbitrary choice of k(j), calculating k̄ requires a costly sum over (N !)2 operands, since
|PN | = N !. In Section 3, we select a base kernel for which the sum can be reduced to N2 terms. We
are now in a position to state our main assumption. We assume that f⇤ belongs to the RKHS of k̄
and has a B-bounded RKHS norm. The norm-bounded RKHS regularity assumption is typical in the
kernelized and neural bandits literature [37, 12, 45, 25]. Note that Eq. (1) only puts a structural prior
on the kernel function, i.e., it describes the generic form of an additive permutation invariant graph
kernel. Specifying the base kernels k(j) determines the representation power of k̄. The smoother the
base kernels are, the less complex the RKHS of k̄ will be. In Section 3, we set the base kernels k(j)
such that k̄ becomes the expressive graph neural tangent kernel.

3 Graph Neural Networks

Graph neural networks are effective models for learning complex functions defined on graphs. As
in Du et al. [15], we consider graph networks that have a single graph convolutional layer and L

1This assumption is for ease of exposition. Graphs with fewer than N nodes can be treated by adding
auxiliary nodes with no features that are disconnected from the rest of the graph.
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are now in a position to state our main assumption. We assume that f⇤ belongs to the RKHS of k̄
and has a B-bounded RKHS norm. The norm-bounded RKHS regularity assumption is typical in the
kernelized and neural bandits literature [37, 12, 45, 25]. Note that Eq. (1) only puts a structural prior
on the kernel function, i.e., it describes the generic form of an additive permutation invariant graph
kernel. Specifying the base kernels k(j) determines the representation power of k̄. The smoother the
base kernels are, the less complex the RKHS of k̄ will be. In Section 3, we set the base kernels k(j)
such that k̄ becomes the expressive graph neural tangent kernel.

3 Graph Neural Networks

Graph neural networks are effective models for learning complex functions defined on graphs. As
in Du et al. [15], we consider graph networks that have a single graph convolutional layer and L
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Related Work. Our work extends the rich toolbox of methods for kernelized bandits and Bayesian
optimization (BO) that work under the norm bounded Reproducing Kernel Hilbert Space assumption
[37, 14, 42, 12]). The majority of these methods are designed for general Euclidean domains and
rely on kernelized confidence sets to select which action to query next. The exception is [43], that
consider the spectral setting in which the reward function is a linear combination of the eigenvectors
of the graph Laplacian and the bandit problem is defined over nodes of a single graph. In contrast,
our focus is on optimizing over graph domains (i.e., set of graphs), and constructing confidence sets
that can quantify the uncertainty of graph neural networks estimates.

This work contributes to the literature on neural bandits, in which a fully-connected [45, 44, 19],
or a single hidden layer convolutional network [25] is used to estimate the reward function. These
works provide sublinear cumulative regret bounds in their respective settings, however, when applied
directly to graph features (as we demonstrate in Section 4.3), these approaches do not scale well with
the number of graph nodes.

Due to its important applications in molecule design, sequential optimization on graphs has recently
received considerable attention. For example, in [28], the authors propose a kernel to capture
similarities between graphs, and at every step, select the next graph through a kernelized random
walk. Other works (e.g., [17, 18, 23, 38]) encode graph representations to the (continuous) latent
space of a variational autoencoder and perform BO in the latent space. While practically relevant for
discovering novel molecules with optimized properties, these approaches lack theoretical guarantees
and deem computationally demanding.

A primary focus in our work is on embedding the natural structure of the data, i.e., permutation
invariance, into the reward model. This is inspired by the works of [6, 32] that consider invariances
in kernel-based supervised learning. Consequently, the graph neural tangent kernel plays an integral
role in our theoretical analysis. Du et al. [15] provide a recursive expression for the tangent kernel
of a GNN, without showing that the obtained expression is the limiting tangent kernel as defined
in Jacot et al. [21] (i.e., as in Eq. (3)). In contrast, we analyze the learning dynamics of the GNN
and properties of the GNTK by exploiting the connection between the structure of a graph neural
network and that of a neural network (in Section 3). We recover that the graph neural tangent kernel
also encodes additivity. Additive models for bandit optimization have been previously studied in [24]
and [35], however, these works only focus on Euclidean domains and standard base kernels.

Finally, we build upon the recent literature on elimination-based algorithms that make use of maximum
variance reduction sampling [13, 8, 7, 9, 40, 30]. One of our proposed algorithms, GNN-PE, employs
a phased elimination strategy together with our GNN confidence sets.

Main Contributions. We introduce a bandit problem over graphs and propose to capture prior
knowledge by modeling the unknown reward function using a permutation invariant additive kernel.
We establish a key connection between such kernel assumptions and the graph neural tangent kernel
(Proposition 3.2). By exploiting this connection, we provide novel statistical confidence bounds
for the graph neural network estimator (Theorem 4.2). We further prove that a phased elimination
algorithm that uses our GNN-confidence bounds (GNN-PE) achieves sublinear regret (Theorem 4.3).
Importantly, our regret bound scales favorably with the number of graphs and is independent of
the number of graph nodes (see Table 1). Finally, we empirically demonstrate that our algorithm
consistently outperforms baselines across a range of problem instances.

2 Problem Statement

We consider a bandit problem where the learner aims to optimize an unknown reward function via
sequential interactions with a stochastic environment. At every time step t 2 {1, . . . , T}, the learner
selects a graph Gt from a graph domain G and observes a noisy reward yt = f⇤(Gt) + ✏t, where f⇤ :
G ! R is the reward function and ✏t is i.i.d. zero-mean sub-Gaussian noise with known variance proxy
�2. Over a time horizon T , the learner seeks a small cumulative regret RT =

P
T

t=1 f
⇤(G⇤)�f⇤(Gt),

where G⇤ 2 argmaxG2G f⇤(G). The aim is to attain regret that is sublinear in T , meaning that
RT /T ! 0 as T ! 1, which implies convergence to the optimal graph. As an example application,
consider drug or material design, where molecules may be represented with graph structures (e.g.,
from SMILES representations [1]) and the reward f⇤(G) can correspond to an unknown molecular
property of interest, e.g., atomization energy. Evaluating such properties typically requires running
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costly simulations or experiments with noisy outcomes. To identify the most promising candidate,
e.g., the molecule with the highest atomization energy, molecules are sequentially recommended for
testing and the goal is to find the optimal molecule with the least number of evaluations.

Graph Domain. We assume that the domain G is a finite set of undirected graphs with N nodes.1
Without exploiting structure, standard bandit algorithms (e.g., [3]) cannot generalize across graphs,
and their regret linearly depends on |G|. To capture the structure, we consider reward functions de-
pending on features associated with the graph nodes. Similar to Du et al. [15], we associate each node
j 2 [N ] with a feature vector hG,j 2 Rd, for every graph G 2 G. We use hG = (hG,j)Nj=1 2 RNd

to denote the concatenated vector of all node features, and N (j) as the neighborhood of node j,
including itself. We define the aggregated node feature h̄G,j =

P
i2N (j) hG,i/||

P
i2N (j) hG,i||2 as

the normalized sum of the neighboring nodes’ features. Similarly, h̄G 2 RNd denotes the aggregated
features, stacked across all nodes. Lastly, we let PN be the group of all permutations of length N ,
and use c ·G to denote a permuted graph, where a permutation c 2 PN is a bijective mapping from
{1, . . . , N} onto itself. Permuting the nodes of a graph c · G produces a permuted feature vector
hc·G := (hG,c(j))
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j=1, and the same holds for the aggregated features h̄c·G .

Reward Model. Practical graph optimization problems, such as drug discovery and materials
optimization often do not depend on how the graphs’ nodes in the dataset are ordered. We incorporate
this structural prior into modeling the reward function, and consider functions that are invariant to
node permutations. We assume that f⇤ depends on the graph only through the aggregated node
features and gives the same reward for all permutations of a graph, i.e., f⇤(c ·G) = f⇤(G), for any
G 2 G and c 2 PN . To guarantee such an invariance, we assume that the reward belongs to the
reproducing kernel Hilbert space (RKHS) corresponding to a permutation invariant kernel
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where k can be any kernel defined on graph representations h̄G. This assumption further restricts
the hypothesis space to permutation invariant functions defined on Nd–dimensional vector repre-
sentations of graphs. This is due to the reproducing property of the RKHS which allows us to write
f(G) = hf, k̄(G, ·)i = hf, k̄(c ·G, ·)i = f(c ·G). To make progress when optimizing over graphs
with a large number of nodes N , we assume that k decomposes additively over node features, i.e.,
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For an arbitrary choice of k(j), calculating k̄ requires a costly sum over (N !)2 operands, since
|PN | = N !. In Section 3, we select a base kernel for which the sum can be reduced to N2 terms. We
are now in a position to state our main assumption. We assume that f⇤ belongs to the RKHS of k̄
and has a B-bounded RKHS norm. The norm-bounded RKHS regularity assumption is typical in the
kernelized and neural bandits literature [37, 12, 45, 25]. Note that Eq. (1) only puts a structural prior
on the kernel function, i.e., it describes the generic form of an additive permutation invariant graph
kernel. Specifying the base kernels k(j) determines the representation power of k̄. The smoother the
base kernels are, the less complex the RKHS of k̄ will be. In Section 3, we set the base kernels k(j)
such that k̄ becomes the expressive graph neural tangent kernel.
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fully-connected ReLU layers of equal width m. Such a network fGNN(G;✓) : G ! R may be
recursively defined as follows:

f (1)(h̄G,j) = W (1)h̄G,j ,

f (l)(h̄G,j) =

r
2

m
W (l)�relu

�
f (l�1)(h̄G,j)

�
2 Rm, 1 < l  L

fGNN(G;✓) =
1

N

NX

j=1

p
2W (L+1)�relu

�
f (L)(h̄G,j)

�
,

(2)

where ✓ := (W (i))iL+1 is initialized randomly with standard normal i.i.d. entries, and
�relu(x) := max(0,x). The network operates on aggregated node features h̄G,j as typical in Graph
Convolutional Networks [27]. For convenience, we assume that at initialization fGNN(G;✓0) = 0,
for all G 2 G, similar to [25, 45]. This assumption can be fulfilled without loss of generality, with
a similar treatment as in [25, Appendix B.2].

Embedded Invariances. In this work, we use graph neural networks to estimate the unknown reward
function f⇤. This choice is motivated by the expressiveness of the GNN, the fact that it scales well
with graph size, and particularly due to the invariances embedded in its structure. We observe that the
graph neural network fGNN is invariant to node permutations, i.e., for all G 2 G and c 2 PN ,

fGNN(G;✓) = fGNN(c ·G;✓).

The key step to show this property is proving that fGNN can be expressed as an additive model of
L-layer fully-connected ReLU networks,

fGNN(G;✓) =
1

N

NX

j=1

fNN(h̄G,j ;✓),

where fNN has a similar recursive definition as fGNN (see Equation A.1). The above properties are
formalized in Lemma A.1 and Lemma A.2.

Lazy (NTK) Regime. We initialize and train fGNN in the well-known lazy regime [11]. In this
initialization regime, when the width m is large, training with gradient descent using a small learning
rate causes little change in the network’s parameters. Let gGNN(G,✓) = r✓fGNN(G,✓) denote
the gradient of the network. It can be shown that during training, for all G 2 G, the network
remains close to fGNN(G,✓0) + gT

GNN(G,✓0)(✓ � ✓0), that is, its first order approximation around
initialization parameters ✓0. Training this linearized model with a squared error loss is equivalent to
kernel regression with a tangent kernel k̃GNN(G,G0) := gT

GNN(G;✓0) gGNN(G0;✓0). For networks
of finite width, this kernel function is random since it depends on the random network parameters
at initialization. We show in Proposition 3.1, that in the infinite width limit, the tangent kernel
converges to a deterministic kernel. This proposition introduces the Graph Neural Tangent Kernel
as the limiting kernel, and links it to the Neural Tangent Kernel ([21], also defined in Appendix A).
Proposition 3.1. Consider any two graphs G and G0 with N nodes and d-dimensional node features.
In the infinite width limit, the tangent kernel k̃GNN(G,G0)/m converges to a deterministic kernel,

kGNN(G,G0) := lim
m!1

k̃GNN(G,G0)/m. (3)

which we refer to as the Graph Neural Tangent Kernel (GNTK). Moreover,

kGNN(G,G0) =
1

N2

NX

j,j0=1

kNN(h̄G,j , h̄G0,j0) (4)

where kNN : Sd�1 ⇥ Sd�1 ! R is the Neural Tangent Kernel.

The proof is given in Appendix A.1. We note that h̄G,j lies on the d-dimensional sphere, since
the aggregated node features are normalized. The NTK is bounded by 1 for any two points on the
sphere [5]. Therefore, Proposition 3.1 implies that the GNTK is also bounded, i.e., kGNN(G,G0)  1
for any G,G0 2 G. This proposition yields a kernel which captures the behaviour of the lazy GNN.
While defined on graphs with Nd dimensional representations, the effective input domain of this
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We observe that the obtained MIG bound does not depend on N the number of nodes in the graphs.
To highlight this advantage, we compare Theorem 4.1 to the equivalent bound for the vanilla neural
tangent kernel which ignores the graph structure. We consider the neural tangent kernel that operates
on graphs through the Nd-dimensional vector of aggregated node features h̄G,

NN(G,G0) = NN

✓
h̄G

N
,
h̄G0

N

◆
. (6)

For NN the maximum information gain scales as �NN,T = O(T (Nd�1)/Nd log1/Nd T ), where
N appears in the exponent [25]. This results in poor scalability with graph size in the bandit
optimization task, as we further demonstrate in Section 4.3. Table 1 summarizes this comparison.

4.2 Confidence Sets

Quantifying the uncertainty over the reward helps the learner to guide exploration and balance it
against exploitation. Confidence sets are an integral tool for uncertainty quantification. Conditioned
on the history Ht�1 = (Gi, yi)i<t, for any G 2 G, the set Ct�1(G, �) defines an interval to which
f⇤(G) belongs with a high probability such that,

P (8G 2 G : f⇤(G) 2 Ct�1(G, �)) � 1� �. (7)

An approach common to the kernelized bandit literature is to construct sets of the form Ct�1(G, �) =
[µt�1(G)± �t�t�1(G)] where �t depends on the confidence level �. The center of the interval, char-
acterized by µt�1(·), is the estimate of the reward, and the width �t�t�1(·), reflects the uncertainty.
In this work, we utilize GNNs for construction of such sets. To this end, we train a graph neural
network to estimate the reward. We use the gradient of this network at initialization to approximate
the uncertainty over the reward, as in [45]. Let fGNN(G;✓(J)

t�1) be the GNN trained with gradient
descent for J steps and by using learning rate ⌘ on the loss

L(✓) = 1

t

X

i<t

�
fGNN(Gi,✓)� yi

�2
2
+m�

��✓ � ✓0
��2
2
,

where � is the regularization coefficient, and ✓0 the network parameters at initialization. We propose
confidence sets of the form

Ct�1(G, �) = [µ̂t�1(G)± �t�̂t�1(G)],

where the center and width of the set are calculated via,

µ̂t�1(G) := fGNN(G;✓(J)
t�1),

�̂2
t�1(G) :=

gT

GNN(G;✓0)p
m

⇣
�I +

1

t

t�1X

i=1

gT

GNN(Gi;✓0)gGNN(Gi;✓0)

m

⌘�1 gGNN(G;✓0)p
m

.
(8)

Here gGNN(G;✓0) = r✓fGNN(G;✓0) denotes the gradient at initialization. Moreover, we use
�0 := �min(KGNN) > 0 to denote the minimum eigenvalue of the kernel matrix calculated for the
entire domain, i.e., KGNN = [kGNN(G,G0)]G,G02G . Theorem 4.2 shows that this construction gives
valid confidence intervals, i.e., it satisfies Eq. (7), when the reward function lies in HGNN and has a
bounded RKHS norm.
Theorem 4.2 (GNN Confidence Bound). Set � 2 (0, 1). Suppose f⇤ 2 HkGNN with a bounded norm
kf⇤k

kGNN
 B. Assume that the random sequences (Gi)i<t and (✏i)i<t are statistically independent.

Let the width m = poly
�
t, L,B, |G|,�,��1

0 , log(N/�)
�
, learning rate ⌘ = C(Lm+m�)�1 with

some universal constant C, and J � 1. Then for all graphs G 2 G, with probability of at least 1� �,

|f⇤(G)� µ̂t�1(G)| / �t�̂t�1(G),

where µ̂t�1 and �̂t�1 are defined in Eq. (8) and

�t ⇡
p
2B +

�p
�

p
2 log 2|G|/�.

The "⇡" notation in Theorem 4.2 omits the terms that vanish with t, i.e., are o(1). An exact version
of the theorem without the aforementioned approximations is given in Appendix C.1.
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where ✓ := (W (i))iL+1 is initialized randomly with standard normal i.i.d. entries, and
�relu(x) := max(0,x). The network operates on aggregated node features h̄G,j as typical in Graph
Convolutional Networks [27]. For convenience, we assume that at initialization fGNN(G;✓0) = 0,
for all G 2 G, similar to [25, 45]. This assumption can be fulfilled without loss of generality, with
a similar treatment as in [25, Appendix B.2].

Embedded Invariances. In this work, we use graph neural networks to estimate the unknown reward
function f⇤. This choice is motivated by the expressiveness of the GNN, the fact that it scales well
with graph size, and particularly due to the invariances embedded in its structure. We observe that the
graph neural network fGNN is invariant to node permutations, i.e., for all G 2 G and c 2 PN ,

fGNN(G;✓) = fGNN(c ·G;✓).

The key step to show this property is proving that fGNN can be expressed as an additive model of
L-layer fully-connected ReLU networks,

fGNN(G;✓) =
1

N

NX

j=1

fNN(h̄G,j ;✓),

where fNN has a similar recursive definition as fGNN (see Equation A.1). The above properties are
formalized in Lemma A.1 and Lemma A.2.

Lazy (NTK) Regime. We initialize and train fGNN in the well-known lazy regime [11]. In this
initialization regime, when the width m is large, training with gradient descent using a small learning
rate causes little change in the network’s parameters. Let gGNN(G,✓) = r✓fGNN(G,✓) denote
the gradient of the network. It can be shown that during training, for all G 2 G, the network
remains close to fGNN(G,✓0) + gT

GNN(G,✓0)(✓ � ✓0), that is, its first order approximation around
initialization parameters ✓0. Training this linearized model with a squared error loss is equivalent to
kernel regression with a tangent kernel k̃GNN(G,G0) := gT

GNN(G;✓0) gGNN(G0;✓0). For networks
of finite width, this kernel function is random since it depends on the random network parameters
at initialization. We show in Proposition 3.1, that in the infinite width limit, the tangent kernel
converges to a deterministic kernel. This proposition introduces the Graph Neural Tangent Kernel
as the limiting kernel, and links it to the Neural Tangent Kernel ([21], also defined in Appendix A).
Proposition 3.1. Consider any two graphs G and G0 with N nodes and d-dimensional node features.
In the infinite width limit, the tangent kernel k̃GNN(G,G0)/m converges to a deterministic kernel,

kGNN(G,G0) := lim
m!1

k̃GNN(G,G0)/m. (3)

which we refer to as the Graph Neural Tangent Kernel (GNTK). Moreover,

kGNN(G,G0) =
1

N2

NX

j,j0=1

kNN(h̄G,j , h̄G0,j0) (4)

where kNN : Sd�1 ⇥ Sd�1 ! R is the Neural Tangent Kernel.

The proof is given in Appendix A.1. We note that h̄G,j lies on the d-dimensional sphere, since
the aggregated node features are normalized. The NTK is bounded by 1 for any two points on the
sphere [5]. Therefore, Proposition 3.1 implies that the GNTK is also bounded, i.e., kGNN(G,G0)  1
for any G,G0 2 G. This proposition yields a kernel which captures the behaviour of the lazy GNN.
While defined on graphs with Nd dimensional representations, the effective input domain of this
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We observe that the obtained MIG bound does not depend on N the number of nodes in the graphs.
To highlight this advantage, we compare Theorem 4.1 to the equivalent bound for the vanilla neural
tangent kernel which ignores the graph structure. We consider the neural tangent kernel that operates
on graphs through the Nd-dimensional vector of aggregated node features h̄G,

NN(G,G0) = NN

✓
h̄G

N
,
h̄G0

N

◆
. (6)

For NN the maximum information gain scales as �NN,T = O(T (Nd�1)/Nd log1/Nd T ), where
N appears in the exponent [25]. This results in poor scalability with graph size in the bandit
optimization task, as we further demonstrate in Section 4.3. Table 1 summarizes this comparison.

4.2 Confidence Sets

Quantifying the uncertainty over the reward helps the learner to guide exploration and balance it
against exploitation. Confidence sets are an integral tool for uncertainty quantification. Conditioned
on the history Ht�1 = (Gi, yi)i<t, for any G 2 G, the set Ct�1(G, �) defines an interval to which
f⇤(G) belongs with a high probability such that,

P (8G 2 G : f⇤(G) 2 Ct�1(G, �)) � 1� �. (7)
An approach common to the kernelized bandit literature is to construct sets of the form Ct�1(G, �) =
[µt�1(G)± �t�t�1(G)] where �t depends on the confidence level �. The center of the interval, char-
acterized by µt�1(·), is the estimate of the reward, and the width �t�t�1(·), reflects the uncertainty.
In this work, we utilize GNNs for construction of such sets. To this end, we train a graph neural
network to estimate the reward. We use the gradient of this network at initialization to approximate
the uncertainty over the reward, as in [45]. Let fGNN(G;✓(J)

t�1) be the GNN trained with gradient
descent for J steps and by using learning rate ⌘ on the loss

L(✓) = 1

t

X

i<t

�
fGNN(Gi,✓)� yi

�2
2
+m�

��✓ � ✓
0
��2
2
,

where � is the regularization coefficient, and ✓
0 the network parameters at initialization. We propose

confidence sets of the form
Ct�1(G, �) = [µ̂t�1(G)± �t�̂t�1(G)],

where the center and width of the set are calculated via,
µ̂t�1(G) := fGNN(G;✓(J)

t�1),

�̂2
t�1(G) :=

g
T

GNN(G;✓0)p
m

⇣
�I +

1

t

t�1X

i=1

g
T

GNN(Gi;✓0)gGNN(Gi;✓0)

m

⌘�1 gGNN(G;✓0)p
m

.
(8)

µ̂t�1(G) := fGNN(G; ✓̂t�1),

�̂2
t�1(G) :=

rfT

GNN(G)p
m

⇣
�I +Ht�1

⌘�1rfGNN(G)p
m

.
(9)

Here gGNN(G;✓0) = r✓fGNN(G;✓0) denotes the gradient at initialization. Moreover, we use
�0 := �min(KGNN) > 0 to denote the minimum eigenvalue of the kernel matrix calculated for the
entire domain, i.e., KGNN = [kGNN(G,G0)]G,G02G . Theorem 4.2 shows that this construction gives
valid confidence intervals, i.e., it satisfies Eq. (7), when the reward function lies in HGNN and has a
bounded RKHS norm.
Theorem 4.2 (GNN Confidence Bound). Set � 2 (0, 1). Suppose f⇤ 2 HkGNN with a bounded norm
kf⇤k

kGNN
 B. Assume that the random sequences (Gi)i<t and (✏i)i<t are statistically independent.

Let the width m = poly
�
t, L,B, |G|,�,��1

0 , log(N/�)
�
, learning rate ⌘ = C(Lm+m�)�1 with

some universal constant C, and J � 1. Then for all graphs G 2 G, with probability of at least 1� �,
|f⇤(G)� µ̂t�1(G)| / �t�̂t�1(G),

where µ̂t�1 and �̂t�1 are defined in Eq. (9) and

�t ⇡
p
2B +

�p
�

p
2 log 2|G|/�.

The "⇡" notation in Theorem 4.2 omits the terms that vanish with t, i.e., are o(1). An exact version
of the theorem without the aforementioned approximations is given in Appendix C.1.
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fully-connected ReLU layers of equal width m. Such a network fGNN(G;✓) : G ! R may be
recursively defined as follows:

f (1)(h̄G,j) = W (1)h̄G,j ,
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where ✓ := (W (i))iL+1 is initialized randomly with standard normal i.i.d. entries, and
�relu(x) := max(0,x). The network operates on aggregated node features h̄G,j as typical in Graph
Convolutional Networks [27]. For convenience, we assume that at initialization fGNN(G;✓0) = 0,
for all G 2 G, similar to [25, 45]. This assumption can be fulfilled without loss of generality, with
a similar treatment as in [25, Appendix B.2].

Embedded Invariances. In this work, we use graph neural networks to estimate the unknown reward
function f⇤. This choice is motivated by the expressiveness of the GNN, the fact that it scales well
with graph size, and particularly due to the invariances embedded in its structure. We observe that the
graph neural network fGNN is invariant to node permutations, i.e., for all G 2 G and c 2 PN ,

fGNN(G;✓) = fGNN(c ·G;✓).

The key step to show this property is proving that fGNN can be expressed as an additive model of
L-layer fully-connected ReLU networks,

fGNN(G;✓) =
1

N

NX

j=1

fNN(h̄G,j ;✓),

where fNN has a similar recursive definition as fGNN (see Equation A.1). The above properties are
formalized in Lemma A.1 and Lemma A.2.

Lazy (NTK) Regime. We initialize and train fGNN in the well-known lazy regime [11]. In this
initialization regime, when the width m is large, training with gradient descent using a small learning
rate causes little change in the network’s parameters. Let gGNN(G,✓) = r✓fGNN(G,✓) denote
the gradient of the network. It can be shown that during training, for all G 2 G, the network
remains close to fGNN(G,✓0) + gT

GNN(G,✓0)(✓ � ✓0), that is, its first order approximation around
initialization parameters ✓0. Training this linearized model with a squared error loss is equivalent to
kernel regression with a tangent kernel k̃GNN(G,G0) := gT

GNN(G;✓0) gGNN(G0;✓0). For networks
of finite width, this kernel function is random since it depends on the random network parameters
at initialization. We show in Proposition 3.1, that in the infinite width limit, the tangent kernel
converges to a deterministic kernel. This proposition introduces the Graph Neural Tangent Kernel
as the limiting kernel, and links it to the Neural Tangent Kernel ([21], also defined in Appendix A).
Proposition 3.1. Consider any two graphs G and G0 with N nodes and d-dimensional node features.
In the infinite width limit, the tangent kernel k̃GNN(G,G0)/m converges to a deterministic kernel,

kGNN(G,G0) := lim
m!1
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which we refer to as the Graph Neural Tangent Kernel (GNTK). Moreover,
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NX

j,j0=1

kNN(h̄G,j , h̄G0,j0) (4)

where kNN : Sd�1 ⇥ Sd�1 ! R is the Neural Tangent Kernel.

The proof is given in Appendix A.1. We note that h̄G,j lies on the d-dimensional sphere, since
the aggregated node features are normalized. The NTK is bounded by 1 for any two points on the
sphere [5]. Therefore, Proposition 3.1 implies that the GNTK is also bounded, i.e., kGNN(G,G0)  1
for any G,G0 2 G. This proposition yields a kernel which captures the behaviour of the lazy GNN.
While defined on graphs with Nd dimensional representations, the effective input domain of this

4

We observe that the obtained MIG bound does not depend on N the number of nodes in the graphs.
To highlight this advantage, we compare Theorem 4.1 to the equivalent bound for the vanilla neural
tangent kernel which ignores the graph structure. We consider the neural tangent kernel that operates
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For NN the maximum information gain scales as �NN,T = O(T (Nd�1)/Nd log1/Nd T ), where
N appears in the exponent [25]. This results in poor scalability with graph size in the bandit
optimization task, as we further demonstrate in Section 4.3. Table 1 summarizes this comparison.

4.2 Confidence Sets

Quantifying the uncertainty over the reward helps the learner to guide exploration and balance it
against exploitation. Confidence sets are an integral tool for uncertainty quantification. Conditioned
on the history Ht�1 = (Gi, yi)i<t, for any G 2 G, the set Ct�1(G, �) defines an interval to which
f⇤(G) belongs with a high probability such that,

P (8G 2 G : f⇤(G) 2 Ct�1(G, �)) � 1� �. (7)
An approach common to the kernelized bandit literature is to construct sets of the form Ct�1(G, �) =
[µt�1(G)± �t�t�1(G)] where �t depends on the confidence level �. The center of the interval, char-
acterized by µt�1(·), is the estimate of the reward, and the width �t�t�1(·), reflects the uncertainty.
In this work, we utilize GNNs for construction of such sets. To this end, we train a graph neural
network to estimate the reward. We use the gradient of this network at initialization to approximate
the uncertainty over the reward, as in [45]. Let fGNN(G;✓(J)
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Here gGNN(G;✓0) = r✓fGNN(G;✓0) denotes the gradient at initialization. Moreover, we use
�0 := �min(KGNN) > 0 to denote the minimum eigenvalue of the kernel matrix calculated for the
entire domain, i.e., KGNN = [kGNN(G,G0)]G,G02G . Theorem 4.2 shows that this construction gives
valid confidence intervals, i.e., it satisfies Eq. (7), when the reward function lies in HGNN and has a
bounded RKHS norm.
Theorem 4.2 (GNN Confidence Bound). Set � 2 (0, 1). Suppose f⇤ 2 HkGNN with a bounded norm
kf⇤k

kGNN
 B. Assume that the random sequences (Gi)i<t and (✏i)i<t are statistically independent.

Let the width m = poly
�
t, L,B, |G|,�,��1

0 , log(N/�)
�
, learning rate ⌘ = C(Lm+m�)�1 with

some universal constant C, and J � 1. Then for all graphs G 2 G, with probability of at least 1� �,
|f⇤(G)� µ̂t�1(G)| / �t�̂t�1(G),

where µ̂t�1 and �̂t�1 are defined in Eq. (9) and

�t ⇡
p
2B +

�p
�

p
2 log 2|G|/�.

The "⇡" notation in Theorem 4.2 omits the terms that vanish with t, i.e., are o(1). An exact version
of the theorem without the aforementioned approximations is given in Appendix C.1.
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Here gGNN(G;✓0) = r✓fGNN(G;✓0) denotes the gradient at initialization. Moreover, we use
�0 := �min(KGNN) > 0 to denote the minimum eigenvalue of the kernel matrix calculated for the
entire domain, i.e., KGNN = [kGNN(G,G0)]G,G02G . Theorem 4.2 shows that this construction gives
valid confidence intervals, i.e., it satisfies Eq. (7), when the reward function lies in HGNN and has a
bounded RKHS norm.
Theorem 4.2 (GNN Confidence Bound). Set � 2 (0, 1). Suppose f⇤ 2 HkGNN with a bounded norm
kf⇤k

kGNN
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where µ̂t�1 and �̂t�1 are defined in Eq. (8) and
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The "⇡" notation in Theorem 4.2 omits the terms that vanish with t, i.e., are o(1). An exact version
of the theorem without the aforementioned approximations is given in Appendix C.1.
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Table 1: Summary of main bounds for the NN and GNN approaches. Here T denotes the bandit
horizon, N the number of nodes in each graph, and d the dimension of node features. The GNN
guarantees are independent of N .

4.3 Bandit Optimization with Graph Neural Networks

The developed confidence sets can be used to assist the learner with controlling the growth of regret.
In this section, we give a concrete example on how our GNN confidence sets (Equation 8) can be
used by an algorithm to solve bandit optimization tasks on graphs.

We introduce GNN-Phased Elimination (GNN-PE; see Algorithm 1) that consists of episodes of pure
exploration over a set of plausible maximizer graphs, similar to [7, 30]. Each episode is followed
by an elimination step, that makes use of GNN confidence bounds to shrink the set of plausible
maximizers. More formally, at step t during an episode e, the learner selects actions via Ge,t =
argmaxG2Ge

�̂e,t�1(G), where Ge is the set of graphs that might maximize f⇤ according to the
learner’s current knowledge. Once the episode is over after Te steps, the set Ge is updated to contain
graphs that still have a chance of being a maximizer according to the confidence bounds [µ̂e,Te

(G)±
�Te

�̂e,Te
(G)] where µ̂e,Te

and �̂e,Te
are only computed based on the points within episode e.

Theorem 4.3 shows that GNN-PE incurs a sublinear control over the cumulative regret. We provide
the proof in Appendix C. We use Õ(·) notation to hide polylog(T ) factors.
Theorem 4.3. Set � 2 (0, 1). Suppose f⇤ 2 HfGNN with a bounded norm kf⇤k

kGNN
 B. Let the

width m = poly
�
t, L,B, |G|,�,��1

0 , log(N/�)
�
, learning rate ⌘ = C(Lm + m�)�1 with some

universal constant C, and J � 1. Then with probability at least 1� �, GNN-PE satisfies

RT = Õ
✓p

T�T,GNN

✓
B +

�p
�

p
log |G|/�

◆◆
.

We can observe the benefit of working with a graph neural network by comparing the bound in
Theorem 4.3 with the regret for a structure-agnostic algorithm. Recall NN the vanilla NTK, defined
over the concatenated feature vectors (Equation 6). For the sake of this comparison, we ignore the
geometric structure and assume that f⇤ 2 HNN. Swapping out kGNN for NN, and respectively the
GNN with an NN as defined in Eq. (A.1), we obtain NN-PE, the neural network counterpart of
GNN-PE. This algorithm accepts Nd-dimensional input vectors as actions. Similar to Theorem 4.3,
we can show that NN-PE can satisfy a guarantee of O

�
T (2Nd�1)/2Nd log1/2Nd T

�
for the regret.

This bound suggests that as N grows, finding the optimal graph can become more challenging for the
learner. Working with kGNN to encode the structure of the bandit problem, and consequently using the
GNN to solve it, removes the dependency on N in the exponent. This result is summarized in Table 1.

We provide some intuition on why working with a permutation invariant model is beneficial for bandit
optimization on graphs. Confidence sets which are constructed for member of HNN are larger, and
result in sub-optimal action selection. Further, training the neural network is a more challenging task,
since permutation invariance is not hard coded in the network architecture and has to be learned from
the data. This results in less accurate reward estimates. We refer the reader to Appendix A.3 for a
more rigorous discussion. There we compare HGNN and HNN, the hypothesis spaces corresponding
to the two models, through the Mercer decomposition of their kernels.

5 Experiments

We create synthetic datasets which may be of independent interest and can be used for evaluating
and benchmarking machine learning algorithms on graph domains. Each dataset is constructed from
a finite graph domain together with a reward function. The domains are generated randomly and
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Here gGNN(G;✓0) = r✓fGNN(G;✓0) denotes the gradient at initialization. Moreover, we use
�0 := �min(KGNN) > 0 to denote the minimum eigenvalue of the kernel matrix calculated for the
entire domain, i.e., KGNN = [kGNN(G,G0)]G,G02G . Theorem 4.2 shows that this construction gives
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Experiments

differ in properties of the member graphs that influence the problem complexity, e.g., number of
nodes and edge density. Each domain Gp,N consists of Erdős-Rényi random graphs, where each
graph has N nodes, and between each two nodes there exists an edge with probability p. The node
features are i.i.d. d = 10 dimensional standard Gaussian vectors. We choose N 2 {5, 20, 100},
p 2 {0.05, 0.2, 0.95}, and thereby sample a total of 9 different domains each containing 10000
graphs. For instance, G0.05,5 denotes the domain with sparse and small graphs, while G0.95,100 is the
domain of dense graphs with many nodes. For every domain, we sample a random reward function
f : Gp,N ! R that is invariant to node permutations. We use GP(0, kGNN) as a prior, and sample f
from its posterior GP. The posterior is calculated using a small random dataset (Gi, yi)i5, where yi
are drawn independently from N (0, 1) and Gi are randomly chosen from Gp,N . The corresponding
dataset is then Dp,N = {(Gi, f(Gi)) |Gi 2 Gp,N}.

Experiment Setup. Every performance curve in the paper shows an average over 20 runs of the
corresponding bandit problem, each with a different action set sampled from Gp,N . The shaded
areas in all figures show the standard error across runs. In all experiments, the reward is observed
with a zero-mean Gaussian noise of variance � = 10�2. We always set width m = 2048 and
layers L = 2, for every type of network architecture. Four algorithms appear in our experiments.
In addition to our main algorithm GNN-PE, we introduce GNN-UCB, which selects actions via
Gt = argmax µ̂t�1(G) + �t�̂t�1(G), the classic UCB policy based on the GNN confidence sets.
The pseudo-code is given in Appendix D.3. NN-UCB, introduced by [45], is the neural counterpart
of GNN-UCB, and NN-PE as discussed in Section 4.3. To configure these algorithms, we only tune
� and � = �t, and we do so by using the simplest dataset D0.05,5. We find that the algorithms are not
sensitive to domain configurations and work for all Dp,N out of the box. Therefore, the same values
for � and � are used across all experiments. We include the complete result of our hyperparameter
search in Figure 5.

Lazy training. We initialize the graph neural networks (and the NNs) in the lazy regime as described
in Eq. (2) (and Eq. A.1). Training a network in this regime with gradient descent causes little change in
the weights. Consequently, it is challenging to effectively train a lazy network in practice. Therefore,
the stopping criterion for gradient descent plays a crucial role in achieving sublinear regret. Inaccurate
estimation of the reward function disturbs the balance of exploration and exploitation, and leads the
learner to poor optima. To prevent this issue, we devise a stopping criterion that depends on the history
Ht�1, such that, as t grows, the network is often trained for more gradient descent steps J . This
criterion can be employed by any neural bandit algorithm and may be of independent practical interest.
The details of training with gradient descent, stopping and batching are given in Appendix D.2.

Regret Experiments. We assess the performance of the algorithms on bandit optimiza-
tion tasks over different domains. In Figure 1, we show the inference cumulative regret
R̂T =

P
tT

f⇤(G⇤)�maxG2G µ̂t�1(G), for which we select graph domains with N = 20 nodes
and edge probability p = 0.2. Figure 6 shows the regret for all dataset configurations. To verify
scalability with |G|, we run the algorithms on action sets of increasing size |G| 2 {200, 500, 1000}.
Figure 1 presents the results: GNN-PE consistently outperforms the other methods. It is evident that
the algorithms built with GNN confidence sets find the optimal graph, regardless of the size of the do-
main. The GNN algorithms exhibit competitive performance, and attain sublinear regret for all dataset
configurations. The neural methods however, may fail to scale and find the optima in limited time.

Scalability with Graph Size. In Section 4.3, we argue that using a neural network which takes
h̄G 2 RNd as the input, causes the regret to grow with O(T (2Nd�1)/2Nd). The additive structure
of the GNN, however, allows the learner to work on a d-dimensional domain, independent of graph
size. Figure 2 reflects this behaviour. Fixing p = 0.2, and |G| = 200, we run the algorithm over
domains with two graph sizes N 2 {20, 100}. GNN-PE achieves sublinear regret in both cases,
and manages to find a global maxima within roughly the same number of steps. This is in contrast to
NN-PE, which is more affected by increasing graph size. A similar comparison for all configurations
and algorithms is plotted in Figure 7, and the same behaviour is observed across all settings: the
performance of GNN methods scales well with N , while this is not the case for NN methods.

Effect of Graph Density. As a final observation, we discuss the effect of edge density. Consider
a complete graph G with

�
N

2

�
edges. The neighborhoods are symmetric and the aggregated node fea-

tures h̄G,i are identical for all i  N . Permutations on this graph will not change the output of either
fGNN or fNN. Therefore, we expect that for dense graphs, i.e., large values of p, using a permutation
invariant model comes with fewer benefits for the learner. This is opposed to when the graph is sparse
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