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TL;DR Meta-Learning the Kernel Federated Setting

Meta-learning for lifelong kernelized bandit optimization > Assume the kernel is a linear combination of known base kernels > We develop F-LiBO for the federated setting:
with oracle optimal performance guarantees D
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> We solve a sequence of kernelized bandit optimization tasks,
where we assume the kernel to be unknown, but shared across all > We use group Lasso to find the sparsity pattern with offline data
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federated manner. > Estimator is consistent > Under similar assumptions we can prove the same convergence

guarantees as for the non-federated setting
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Problem Setting

Under mild assumptions on the data model, H} is with high

> Sequentially interacting with the environments probability a consistent estimator in the number of Experiments
samples n and the number of tasks m. That is,
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> We want valid and tight confidence bands for the reward 5 b
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.. . R(n, m) = O (Bv/nm + R*(n,m)) = O (R*(n, m)) > In the beginning, when kernel estimate is invalid, the regret
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behaves the same as the naive bandit.
> Eventually, the regret becomes oracle optimal.

where R*(n, m) is the lifelong regret of BASEBO, if given
knowledge of the kernel.
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