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Assume that true kernel can be decomposed as
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j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1  i  n and 1  s  m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤  B

s  m

i  n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1  1 and kj(x,x0)  1

Sparsity pattern J
⇤ = {1  j  p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)|  �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
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j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,
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Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.
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Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.
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Figure 7: Examples of possible functions fs for the meta-dataset.

How can we find a good Hk̂?How can we find a good 

Valid but too wideInvalid Valid and tight

Meta-Learning Hypothesis Spaces

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

To solve a kernelized sequential decision-making problem, you do not
need to know the kernel. A finite set of candidate kernels is enough.

Obtaining reliable confidence sequences for unknown target functions
is a central challenge in sequential decision-making tasks. These confi-
dence sets are typically constructed by relying on oracle knowledge of the
hypothesis space, e.g., a known RKHS.

We propose any-time valid confidence sets that rely on a meta-learned
kernel, instead of assuming oracle knowledge.

Applied to stochastic bandits, we show that our meta-learned kernel
satisfies the same guarantees as the oracle. Any algorithm which obtains
sublinear regret with oracle kernel knowledge, can achieve the same regret
rate through meta-learning.

Our guarantees holds for meta-learning both in offline and lifelong (i.e.
fully sequential) setting.
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of size 1000 from X . Error bars show stan-
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If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.
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Meta-learning for lifelong kernelized bandit optimization 
with oracle optimal performance guarantees

▷ We solve a sequence of kernelized bandit optimization tasks, 
where we assume the kernel to be unknown, but shared across all 
tasks.

▷ We develop LiBO, an algorithm that sequentially meta-learns an 
approximate kernel and solves the incoming tasks with the latest 
kernel estimate. 

▷ Our method pairs with any kernelized bandit algorithm, ensuring 
oracle optimal performance, meaning that the LIBO's task-
specific regret approaches the regret of an algorithm with oracle 
knowledge of the true kernel over time.

▷ We also propose F-LiBO, which solves the lifelong problem in a 
federated manner.

▷ Sequentially interacting with the environments

▷ Approximating the kernel

▷ We want valid and tight confidence bands for the reward 
functions such that the bandit solvers converge properly

▷ We achieve this with a good kernel approximation

▷ Applications

▷ Assume the kernel is a linear combination of known base kernels

▷ We use group Lasso to find the sparsity pattern with offline data

▷ Estimator is consistent

▷ Guarantee

▷ Key features
• Solves a sequence of kernelized bandit tasks in lifelong setting
• Pairs with any kernelized bandit algorithm
• Uses forced exploration to improve convergence

▷ Under similar assumptions we can prove the same convergence 
guarantees as for the non-federated setting

▷ We develop F-LiBO for the federated setting:

▷ Offline kernel convergence experiment

Regret of UCB using the estimated kernel quickly converges to 
the regret achieved with oracle knowledge of the kernel

▷ Lifelong bandit optimization

Sythetic 2D consine features

Sythetic 2D consine features GLMNET data

▷ Meta-learning with LiBO improves the performance on both 
synthetic and real world data

▷ In the beginning, when kernel estimate is invalid, the regret 
behaves the same as the naive bandit.

▷ Eventually, the regret becomes oracle optimal.

unknown reward functions allowing downstream bandit al-
gorithms to provably converge to the optimum. Second, all
candidate kernels kj that are not active in k? are eventually
excluded from k̂. By excluding all kj with j /2 J? which are
not necessary for estimating fs 2 Hk? , we effectively shrink
the size of the hypothesis space, thereby reducing the uncer-
tainty of the reward function estimates during bandit opti-
mization. Compared to kfull := 1

p

Pp
j=1 kj , which naively

uses all kernels, this leads to significant improvements in the
query efficiency and performance of the bandit optimization.

Comparison with Prior Work. Kassraie et al. [2022]
propose META-KEL, a Lasso-equivalent loss for meta-
learning a sparse kernel, given i.i.d. offline data from
i.i.d. tasks. We emphasize that is not possible to achieve
lifelong guarantees by sequentially applying this algorithm.
META-KGL differs from META-KEL in key points, and
satisfies stronger consistency guarantees: 1) It converges to
k? as either n the number of samples per task, or m number
of tasks grow. In contrast, META-KEL converges in m only.
2) META-KGL satisfies the exact recovery guarantee for k?
since J⇤ = Ĵ with high probability. While META-KEL only
guarantees that J? ⇢ Ĵ . This is not sufficient to show that
meta-learning improves upon the trivial kernel choice kfull.
Both of these properties are required in the lifelong analysis.

4 LIFELONG BANDIT OPTIMIZATION

We now use META-KGL as a building block to develop
the Lifelong Bandit Optimizer (LIBO), an algorithm for
lifelong bandit or Bayesian optimization. LIBO is paired
with a BASEBO agent which can be instantiated by any
kernelized bandit algorithm, e.g., GP-UCB [Srinivas et al.,
2010] or GP-TS [Chowdhury and Gopalan, 2017]. For each
task fs, the BASEBO agent is given the kernel k̂s�1 meta-
learned on the s � 1 first tasks. Equipped with the kernel,
BASEBO interacts with the current bandit environment,
aiming to optimize its payoff by balancing exploration and
exploitation.

In the lifelong setting, we not only have to explore for the
sake of optimizing the current reward function fs, but also
we need to make sure to that the sequence of action-reward
pairs will be sufficiently informative (in the sense of As-
sumption 3.2) for meta-learning k̂s in the next stage. To
this end, LIBO forces the base agent to select purely ex-
ploratory actions for the first ns steps of the task, by i.i.d.
sampling from uniform distribution on X . Following Basu
et al. [2021], we refer to this as forced exploration and use
Dexp

s := {(xs,i, ys,i), i  ns} to refer to the collected ex-
ploratory data of task fs. We use a decreasing sequence
(n1, . . . , nm) as detailed below, since less exploration by
BASEBO will be required once more multi-task data is col-
lected. For steps i > ns, BASEBO selects actions according
to its normal bandit policy. After the agent has interacted
with the current task for n steps, we pass the exploratory

BASEBO
(i > ns)

Environment

Forced Exploration
(i  ns)

META-KGL

k̂s�1

xs,i

fs(xs,i) + ✏s,i

Dexp
s

Dexp
1

, Dexp
2

, . . . , Dexp
s�1

Figure 1: Overview of LIBO.

data Dexp
1:s to META-KGL to meta-learn k̂s. We then an-

nounce this new kernel estimate to the BASEBO agent for
solving the next task s+ 1. Figure 1 visualizes this process
and Algorithm 2 summarizes LIBO.

4.1 REGRET BOUNDS

Let R?(n) be the worst-case regret of BASEBO with oracle
knowledge of true kernel k? on single tasks when the
reward resides in Hk? . When employed sequentially on
m bandit tasks, the worst-case lifelong regret R(m,n) will
be of the order mR?(n) with high probability. We refer to
this as oracle regret, since the BASEBO has access to the
true kernel k⇤ which does not hold in practice. Since our
meta-learned kernels k̂s are an approximations of k⇤, the
oracle regret is a natural lower bound on the regret of LIBO.

In the following, we show that if R?(n) the single-task
oracle regret of the base bandit algorithm is sublinear
(e.g., as for GP-UCB or GP-TS), then so is the lifelong
regret R(m,n) of LIBO. Importantly, R(m,n) is not only
sublinear in n, but also converges with high probability to
R?(m,n). Theorem 4.1 presents this guarantee, assuming
that the forced exploration datasets Dexp

s satisfy assumption
Assumption 3.2 which META-KGL requires to yield a
provably consistent estimator of k?. Later in Proposition 4.3,
we show that exploration by i.i.d. sampling from a uniform
distribution over X will guarantee this assumption.

Theorem 4.1. For all tasks s = 1, . . . ,m, assume that
the reward function fs 2 Hk? has bounded RKHS norm
kfskk?  B. Set the number of forced exploration actions
as ns =

p
n

s1/4
, and assume that Assumption 3.1 and 3.2

hold for the data Dexp
1:s for all s = 1, . . . ,m. Suppose, with

probability greater than 1� �/2, BASEBO has worst-case
oracle regret R?(m,n). Then, the lifelong regret of LIBO
satisfies

R(m,n)�R?(m,n) = O
⇣
Bm3/4pn| {z }

forced exp.

+B(nm)1/3 log3/4(mp/�)| {z }
kernel mismatch

⌘

with probability greater than 1� �.

The explicit inequality without the O-notation can be found
in Appendix E, together with the proof. In the following, we

Regret

Theorem (Informal)

Under mild assumptions on the data model, Hk̂ is with high
probability a consistent estimator in the number of
samples n and the number of tasks m. That is,

lim
n!1

P
⇥
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⇤
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P
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⇤
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probability a consistent estimator in the number of samples n
and the number of tasks m. That is,
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Theorem (Informal)

Under mild assumptions, LiBO paired with BaseBO achieves
oracle optimal performance with high probability, i.e.

R(n,m) = O
�
B
p
nm + R?(n,m)

�
= O (R?(n,m))

where R?(n,m) is the lifelong regret of BaseBO, if given
knowledge of the kernel.


