
Meta-Loss

Theorem (Informal)

Under mild regularity assumptions on the meta-data, with

probability greater than 1� �,

- k̂ is sparse (in the sense of k⌘k1)
- Hk⇤ ✓ Hk̂

- For f 2 Hk⇤ :

P
⇣
8x 2 X , 8t � 1 : f (x) 2 Ct�1(k̂ ; x)

⌘
� 1� �.

Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie, Jonas Rothfuss, Andreas Krause

Meta-Learning Model

Sequential Decision-makingOverview

Problem Setting

Meta-Learned Confidence Sets

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤ B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤ B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤ B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

yt = f
⇤(xt) + ✏t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

✏t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤ B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

yt = f
⇤(xt) + ✏t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

✏t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤ B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤ B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘
� 1� �

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

s m

i n

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1 i n and 1 s m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

s m

i n

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1 i n and 1 s m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

s m

i n

Assume that true kernel can be decomposed as

k(x,x0) =
pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1 1 and kj(x,x0) 1

Sparsity pattern J
⇤ = {1 j p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1 i n and 1 s m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

s m

i n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1 1 and kj(x,x0) 1

Sparsity pattern J
⇤ = {1 j p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1 i n and 1 s m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

s m

i n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1 1 and kj(x,x0) 1

Sparsity pattern J
⇤ = {1 j p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1 i n and 1 s m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

s m

i n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1 1 and kj(x,x0) 1

Sparsity pattern J
⇤ = {1 j p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1 i n and 1 s m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

s m

i n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1 1 and kj(x,x0) 1

Sparsity pattern J
⇤ = {1 j p : ⌘⇤j 6= 0}

Meta-loss

Proposition

We require regularity assumptions on the meta-data: Restricted Eigenvalue Assumption and Multi-task Group Beta-min
Condition.

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0 ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1 j p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0 ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1 j p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Learning Hypothesis Spaces

where d =
Pp

j=1 dj and

�(x) =
⇣p

⌘
⇤

1�
T
1 (x), · · · ,

p
⌘⇤p�

T
p (x)

⌘T
.

For each task s, the function fs is contained in Hk⇤ . By the
Mercer’s theorem fs may be decomposed as

fs(x) = �T (x)�⇤

s =
pX

j=1

q
⌘
⇤

j�
T
j (x)�

⇤

s
(j)

, (6)

where �⇤

s 2 Rd is the coefficients vector of task s and
�⇤

s
(j) 2 Rdj is the sub-vector corresponding to kernel kj . It

is not possible to meta-select a base kernel kj which has not
contributed to the generation of the meta-data. Therefore, if
a base kernel is active in the construction of Hk⇤ , it is only
natural to assume that there is some task in the meta-data
which reflects this presence. More formally, we assume that,
for any j 2 Jk⇤ , there exists some s m where �⇤

s
(j) 6= 0.

We define �⇤ = (�⇤

1
T
, · · · ,�⇤

m
T)T 2 Rmd as the concate-

nated coefficients vector for all tasks. To refer to the group
of coefficients that correspond to kernel kj across all tasks,
we use �⇤(j) = ((�⇤

1
(j))T , · · · , (�⇤

m
(j))T)T 2 Rmdj . Our

next assumption guarantees that the meta-learning problem
is not ill-posed.
Assumption 3.1 (Group Beta-min Condition). There exists
c1 > 0 s.t. for all j 2 Jk⇤ it holds that

���⇤(j)
��
2
� c1.

This assumption is inevitable for recovering the sparsity
pattern from empirical data and it is widely used in the
high-dimensional statistics literature (e.g., Bühlmann &
Van De Geer, 2011; Zhao & Yu, 2006; Van de Geer et al.,
2011). Assumption 3.1 implies that for j to be in Jk⇤ , the
coefficients vector corresponding to kernel kj can not be
zero or arbitrarily close to zero. In practice,

���(j)
��
2

has
to be comparable with the noise level for the activity of a
base kernel not to be mistaken with randomness.

4. Meta-learning the Hypothesis Space
(META-KEL)

In the following section, we present our formulation of
the meta-learning problem and analyze the properties of
the learned hypothesis space. We meta-learn the kernel by
solving the following optimization problem. Then, we set
the hypothesis space of the downstream learning algorithm
to be the RKHS of the meta-learned kernel.

min
⌘,f1,...,fm

1

m

mX

s=1

"
1

n

nX

i=1

(ys,i � fs(xs,i))
2

#

+
�

2

mX

s=1

kfsk2k +
�

2
k⌘k1

s.t. 8s : fs 2 Hk, k =
pX

j=1

⌘jkj , 0 ⌘

(7)

We will refer to this problem as Meta-Kernel Learning
(META-KEL). The first part of the objective is similar to
the kernel ridge regression loss, and accounts for how well
a series of regularized fs fit the meta-data. The last term
regularizes our choice of the kernel function. We use `1-
norm regularization for ⌘ to implicitly perform meta-model-
selection. As shown in Proposition 4.4, the meta-learned
kernel will reflect the sparsity pattern of the true kernel. The
optimization problem (7) is convex and admits an efficient
solution, as explained next.

We first introduce a vectorized formulation of Equation (7).
Let ys 2 Rn denote the observed values for a task s

and y = (yT
1 , · · · ,yT

m)T 2 Rmn the multi-task stacked
vector of observations. We then design a multi-task fea-
ture matrix. We define � to be a mn ⇥ md block-
diagonal matrix, where each block s corresponds to �s =
(�(xs,1), · · · ,�(xs,n))T , the n⇥d feature matrix of task s.
Figure 6 provides an illustration thereof. As shown in Propo-
sition 4.1, this vectorized design brings forth a parametric
equivalent of META-KEL, which happens to be the well-
known Group Lasso problem.
Proposition 4.1 (Solution of META-KEL). Let k =P

j ⌘̂jkj be a solution to Problem (7). Then, for all
1 j p, it holds that

⌘̂j =
����̂(j)

���
2

with �̂ = (�̂(j))jp as the solution of the following convex
optimization problem:

min
�

1

mn
ky ���k22 + �

pX

j=1

����(j)
���
2
. (8)

We show this equivalence by eliminating ⌘. We use a trick
introduced by Bach et al. (2004), which, for w, v 2 R states
2|w| = minv>0 w

2
/v + v. The proof is given in Appendix

A.2. Problem (8) can be optimized by any Group Lasso
solver. Bach et al. (2011) present a number of coordinate
descent algorithms which efficiently find the solution.

Before introducing the meta-learned kernel k̂, we note that
Reproducing Kernel Hilbert Spaces are equivalent up to
scaling of the kernel function. For c > 0, both Hk and the
scaled version Hck contain the same set of functions. Going
from Hk to Hck, the RKHS norm of any member f would
scale by 1/c, i.e. kfkk = ckfkck. Hence, the norm k⌘̂k1
will be irrelevant when meta-learning the function space.
This norm can be scaled or normalized, and still yield the
same hypothesis space, only with a scaled operator norm.
For consistency of notation, we define k̂ as follows. For any
two points x, x0 2 X , set

k̂(x,x0) =
pX

j=1

⌘̂j

c1
�T

j (x)�j(x
0), (9)

Meta-Loss

Proposition

Meta-KeL is convex, has a solution and optimizing it is as di�cult

as the Group Lasso.

Meta-Learning Hypothesis Spaces

Ct�1(k;x) = [µt�1(k;x)± ⌫t�t�1(k;x)]

µt�1(k;x) = kT
t�1(x)(Kt�1 + �̄

2I)�1yt�1 (D.1)

�
2
t�1(k;x) = k(x,x)� kT

t�1(x)(Kt�1 + �̄
2I)�1kt�1(x)

Data from m similar tasks is available (fixed design)

ys,i = fs(xs,i) + "s,i, for 1 i n and 1 s m

"s,i: also �
2 sub-Gussian, i.i.d.

fs : X ! R, fs 2 Hk⇤ , kfskk⇤ B

s m

i n

Assume that true kernel can be decomposed as

k
⇤(x,x0) =

pX

j=1

⌘
⇤
j kj(x,x

0)

p < 1

⌘
⇤
j : unknown, non-negative

Better choice is ⌘⇤j 2 {0, 1}.

kj : known, finite-dimensional

Is extendable to infinite-dimensional kernels.

k⌘⇤k1 1 and kj(x,x0) 1

J
⇤ = {1 j p : ⌘⇤j 6= 0} captures sparsity pattern of tk.

Let k̂ be the minimizer of

Proposition

We require regularity assumptions on the meta-data:

Restricted Eigenvalue Assumption and Multi-task Group Beta-min Condition.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)| �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)| �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k
⇤(x, x0) = 1

5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Legendre

polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}. Using this kernel,

we generate a random meta-data set of size m = n = 50. On a test task, with a fresh
new function f

⇤, we assess the confidence sets at t = 4.
Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample of size 1000 from X .
Error bars show standard error for 50 runs of the problem.

1� �

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k̂;x)� f(x)| �t�1(k̂;x)
⇣
B +B✏(n,m) + �

q
d̂ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow,
✏(n,m) vanishes and d̂ ! d

⇤, the dimension of k⇤.

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL. Meta-Learning Hypothesis Spaces

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS. This is a strong as-
sumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

Figure 8: BO (minimization) with META-KEL. Upper plot shows the state at t = 5 and the lower plot at t = 55.

f 2 Hk⇤

fs 2 Hk⇤

w.h.p. {8x 2 X : f(x) 2 Ct�1(k
⇤;x)}

xt = argmax
x2X

Ct�1(k̂;x)

Jk⇤ ⇢ {1, · · · , 20}, |Jk⇤ | = 5

D.1. SAVI Poster

Interacting with the environment

yt = f
⇤(xt) + "t

xt 2 X , depends on the history (x1:t�1, y1:t�1)

X ⇢ Rd0 , compact

"t: �2 sub-Gussian, i.i.d.

f
⇤ : X ! R, f⇤ 2 Hk⇤ , kf⇤kk⇤ B

k
⇤ unknown

Find k̂ s.t. the confidence sets are valid

P
⇣
8x 2 X , 8t � 1 : f⇤(x) 2 Ct�1(k̂;x)

⌘

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Applied to BO, our results imply a sublinear regret guarantee for the GP-
UCB algorithm using our meta-learned kernel. This bound approaches
that of the oracle algorithm as the amount of meta-data increases.

Analysis of the regret that rely on RKHS confidence sets with a known
kernel can be immediately extended to use our meta-learned confidence
bounds, removing the dependency on the known kernel assumption.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Applied to BO, our results imply a sublinear regret guarantee for the GP-
UCB algorithm using our meta-learned kernel. This bound approaches
that of the oracle algorithm as the amount of meta-data increases.

Analysis of the regret that rely on RKHS confidence sets with a known
kernel can be immediately extended to use our meta-learned confidence
bounds, removing the dependency on the known kernel assumption.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Applied to BO, our results imply a sublinear regret guarantee for the GP-
UCB algorithm using our meta-learned kernel. This bound approaches
that of the oracle algorithm as the amount of meta-data increases.

Analysis of the regret that rely on RKHS confidence sets with a known
kernel can be immediately extended to use our meta-learned confidence
bounds, removing the dependency on the known kernel assumption.

Hk⇤Hk̂

Hk1 Hk2

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle
knowledge of the hypothesis space, e.g., a known RKHS. This is a strong
assumption.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Meta-Learning Hypothesis Spaces

Figure 5. The regret of GP-UCB used with k̂ approaches the ora-
cle regret as the number of offline tasks increase.

tor ⌘⇤ is then normalized. Across all experiments, we set
p = 20 and s = |Jk⇤ | = 5. To sample the meta-data Dn,m,
we choose m independent random subsets of Jk⇤ and gener-
ate the functions fs via Equation (6) where �⇤(j) are drawn
from an i.i.d. standard uniform distribution. We then scale
the norm kfkk⇤ to B = 10. The data for a single task,
i.e., (xs,i, ys,i)in, is then created by uniformly drawing
i.i.d. samples from the domain X and evaluating fs at those
points. We add Gaussian noise with standard deviation
� = 0.01 to all data points. Figure 8 in the appendix shows
how random fs may look like. For all experiments we set
n = m = 50 unless stated otherwise. To meta-learn k̂, we
solve the vectorized META-KEL problem (Eq. 8) over �(j)

with CELER, a fast solver for the group Lasso (Massias et al.,
2018), and then set ⌘̂ according to Proposition 4.1. We set
� = 0.03, such that it satisfies the condition of Theorem 4.3.
As shown in Figure 10 in the appendix, the choice of � has
little effect on the performance of the algorithm.

Confidence Set Experiment We perform calibration
and sharpness experiments to assess the meta-learned
confidence sets (Gneiting et al., 2007). Figure 3 presents
the result. To obtain an ↵-confidence interval for some
f(x) using a kernel k, we assume a f ⇠ GP(0, k) prior
and calculate the ↵-quantile of the posterior after observing
4 noisy i.i.d. draws from the function. For each hypothesis,
the y-axis of the left plot shows the empirical coverage of
the confidence sets, i.e., the fraction of test points contained
in the ↵-confidence intervals for varying levels ↵. In this
plot, if a curve were to fall below the x = y line, it would
have implied insufficient coverage and hence over-confident
sets. The plot on the right shows the posterior variance
averaged across all test points. This quantity, referred to
as sharpness, reflects the width of the confidence bands.
Figure 3 demonstrates that the meta-learned confidence sets
are well-calibrated for the entire range of confidence-levels
and are tight relative to the true sets. In contrast, kfull yields
conservative confidence sets, due to considering polynomi-
als Pj that do not contribute to the construction of f(x). We

Figure 6. Cumulative regret of GP-UCB. A synthetic 2D BO (left),
hyper-parameters tuning of GLMNET (right).

use 1000 test points for calculating the empirical averages.
The plot shows the values averaged over 50 runs, where for
each the kernel k⇤ and the data are generated from scratch.

Regret Experiment We verify the performance of GP-
UCB when used together with k̂. We generate the random
reward function f in a manner similar to fs of the meta-data.
The BO problem is simulated according to Equation (1), and
the actions are selected via Equation (11). Figure 9 in the
appendix shows how this algorithm samples the domain and
how the confidence estimates shrink by observing new sam-
ples. Keeping the underlying random k

⇤ fixed, we generate
100 random instances of the meta-learning and the BO prob-
lem. In Figure 4 we present the average regret and its stan-
dard deviation. In these plots, the simple regret of GP-UCB
with a kernel k is labeled rt(k) = f(x⇤)�max⌧t f(x⌧).
Respectively, the cumulative inference regret is Rt(k) =P

⌧t f(x
⇤) � maxx µ⌧�1(x). The algorithm converges

to the optimum using all three kernels. The meta-learned
kernel, however, improves upon using kfull and results in a
performance competitive to when k

⇤ is known by GP-UCB.
This behavior empirically confirms Corollary 5.2.

Consistency Experiment From Corollary 5.2 we con-
cluded that, as the size of the meta-data grows, the regret
bound achieved via k̂ converges to the oracle bound, i.e., the
bound satisfied by the learner when it has knowledge of the
true kernel. As Figure 5 shows, this consistency is also re-
flected in the empirical regret values. As we increase m, the
number of offline tasks given to the meta-learner, the cumu-
lative inference regret at T = 100 improves. It approaches
the regret obtained by the oracle algorithm. The value of
� does not affect this convergence, as long as it satisfies
Theorem 4.3. Similar to Figure 4, this plot is generated for
a fixed random k

⇤, averaged over 50 random instances of
the meta-learning and BO problem.

Regret Experiment for 2D domain We repeat the regret
experiment, with synthetic data over the 2-dimensional do-
main X = [�1, 1]2. For x = (x1, x2) 2 X , we define the
Legendre feature map as �(x) = (Pj(x1)Pp�j(x2))0jp.
This feature map is (p+ 1)-dimensional, and has terms of
degree at most p. We use the polynomial Pj(x1)Pp�j(x2)
as the feature �j(x) and create a synthetic dataset in a fash-

Meta-Loss

Corollary

Provided that there is enough meta-data,

– The learner achieves sublinear regret, w.h.p.

– This guarantee is tight compared to the one for the Or-

acle learner, and approaches it at a O(1/
p
mn) rate.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS.

We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

Applied to BO, our results imply a sublinear regret guarantee for the GP-
UCB algorithm using our meta-learned kernel. This bound approaches
that of the oracle algorithm as the amount of meta-data increases.

Analysis of the regret that rely on RKHS confidence sets with a known
kernel can be immediately extended to use our meta-learned confidence
bounds, removing the dependency on the known kernel assumption.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Sequential
Decision-making

Task

Offline
Meta-Learning

2D synthetic data Legendre features

GLMNET data + RFF

[Friedman et al 2010]

[GP-UCB, Srinivas et al.]

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Sequential
Decision-making

Task

Offline
Meta-Learning

2D synthetic data Legendre features

GLMNET data + RFF

[Friedman et al 2010]

[GP-UCB, Srinivas et al.]

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Sequential
Decision-making

Task

Offline
Meta-Learning

2D synthetic data Legendre features

GLMNET data + RFF

[Friedman et al 2010]

[GP-UCB, Srinivas et al.]

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Sequential
Decision-making

Task

Offline
Meta-Learning

2D synthetic data Legendre features

GLMNET data + RFF

[Friedman et al 2010]

[GP-UCB, Srinivas et al.]

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Meta-Learning Hypothesis Spaces

|Jk⇤ | s be the number candidate kernels that contribute to
k
⇤. If Assumption 4.2 holds with (s), then with probability

greater than 1 � �, the number of kernels active in k̂ is
bounded by

|Jk̂|
4s

mn2(s)

which implies that if mn >
4s

p2(s) , then with the same
probability

Hk̂ (Hkfull .

Hence, in the presence of enough meta-data, Hk̂ is a strict
subset of Hkfull , and therefore

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

where the left relation is due to Theorem 4.3. Figure 2 illus-
trates the nested sets. We conclude that our meta-learned
hypothesis space has favorable properties: it contains the
true hypothesis space, and it is sparse in structure, in partic-
ular, smaller than the conservative candidate space.

The fact that Hk̂ is smaller than Hkfull reduces the complex-
ity of the downstream learning problem and yields faster
convergence rates. We provide an example of this effect
in Section 5, where we analyze a Bayesian optimization
problem, and establish how choosing k̂ improves upon kfull.
Finally, our experiments (e.g. Figure 4) support the claim
that in practice the BO algorithm is faster in finding the
optimum when it uses the meta-learned kernel.

Figure 2: The oracle Hk⇤ (Eq. 5), the meta-learned Hk̂
(Eq. 9) and the hand-picked Hkfull (Eq. 10) hypothesis
spaces (informal)

5. Sequential Decision-making with
META-KEL

We now analyze the effect of using k̂ as kernel function in
the downstream sequential decision-making problem. We
adopt the common construction of confidence sets given
in Equation (2), and define Ĉt�1(x) := Ct�1(k̂;x). We
let µ̂t�1(x) := µt�1(k̂;x), and �̂t�1(x) := �t�1(k̂;x),
where µt�1(k;x) and �t�1(k;x) are as defined in Equa-
tion (3) with �̄ = 1 + 2/T .3

3The functions µ̂t�1 and �̂t�1 are the posterior mean and vari-
ance of GP(0, k̂), conditioned on Ht�1, with noise variance �̄

2.

Theorem 5.1 shows that for the right choice of ⌫t, the set
Ĉt�1(x) is a valid confidence bound for any f 2 Hk⇤ ,
evaluated at any x 2 X , at any step t, with high probability.
Theorem 5.1 (Confidence Bounds with META-KEL). Let
f 2 Hk⇤ with kfkk⇤ B, where k

⇤ is unknown. Under
the assumptions of Theorem 4.3, with probability greater
than 1� �, for all x 2 X and 1 t T ,

|µ̂t�1(x)�f(x)| ⌫t�̂t�1(x)

B

✓
1 +

✏(n,m)

2c1

◆

+ �

s

d̂ log

✓
1 +

�̄�2t

c1

◆
+ 2 + 2 log(1/�)

!

where d̂ =
P

j2Jk̂
dj .

The proof is given in Appendix C. As discussed in Section 4,
the ✏(n,m)/2c1 term shrinks faster than O(1/

p
mn) and

d̂ approaches d⇤ =
P

j2Jk⇤ dj at a similar rate. Therefore,
Theorem 5.1 presents a tight confidence bound relative to
the case when k

⇤ is known by the agent. In this case, due
to Chowdhury & Gopalan (2017), Theorem 2, the 1 � �

confidence bound would be,

|µt�1(x)�f(x)| �t�1(x)
⇣
B+

�

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

where the mean and variance functions are defined by
µt�1(x) := µt�1(k⇤;x) and �t�1(x) := �t�1(k⇤;x) with
�̄ = 1 + 2/T . We conclude that the base learner does not
require knowledge of the true kernel for constructing confi-
dence sets, as long as there is sufficient meta-data available.
Theorem 4.3 quantifies this notion of sufficiency.

Case Study: Bayesian Optimization As an example ap-
plication, we consider the classic Bayesian optimization
problem, but in the case where Hk⇤ is unknown. This ex-
ample illustrates how Theorem 5.1 may be used to prove
guarantees for a decision-making algorithm, which uses the
meta-learned kernel due to a lack of knowledge of k⇤. We
follow the setup and BO notation of Srinivas et al. (2009).
The agent seeks to maximize an unknown reward function
f , sequentially accessed as described in Equation (1). Their
goal is to choose actions xt which maximize the cumulative
reward achieved over T time steps. This is equivalent to min-
imizing the cumulative regret RT =

PT
t=1[f(x

⇤)� f(xt)],
where x⇤ is a global maximum of f . Note that if RT /T ! 0
as T ! 1 then max1tT f(xt) ! f(x⇤), i.e., the
learner converges to the optimal value. We will refer to
this property as sublinearity of the regret. In the spirit of
the GP-UCB algorithm (Srinivas et al., 2009), we choose
the next point by maximizing the upper confidence bound
as determined by Theorem 5.1

xt = argmax
x2X

µ̂t�1(x) + ⌫t�̂t�1(x) (11)

Meta-Learning Hypothesis Spaces

Algorithm 1 Iterative META-KEL solver
1: Input Dm,n, �, kj : 81 j p, ✏, Tstop

2: Initialize (↵(0)
1 , · · · ,↵(0)

m ,⌘(0))
3: t 1
4: while t Tstop or L1(↵

(t�1)
1 , · · · ,↵(t�1)

1 ;⌘(t�1)) � ✏ do
5: ⌘(t) argminL1(↵

(t�1)
1 , · · · ,↵(t�1)

m ;⌘)
6: for all s 2 [1, · · · ,m] do
7: ↵(t)

s argminL2(⌘(t);↵s)
8: end for
9: t t+ 1

10: end while

Figure 7: Examples of possible functions fs for the meta-dataset.

f 2 Hk⇤

fs 2 Hk⇤

f
w.h.p.
2 Ct�1(k

⇤;x)

xt = argmax
x2X

Ct�1(k̂;x)

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Sequential decision-making describes a class of problems where a learner
sequentially interacts with an unknown stochastic environment, with the
goal of maximizing a reward.

Obtaining reliable confidence sequences for unknown target functions is
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

Meta-Learning Hypothesis Spaces

|Jk⇤ | s be the number candidate kernels that contribute to
k
⇤. If Assumption 4.2 holds with (s), then with probability

greater than 1 � �, the number of kernels active in k̂ is
bounded by

|Jk̂|
64s

mn2(s)

which implies that if mn >
64s

p2(s) , then with the same
probability

Hk̂ (Hkfull .

Hence, in the presence of enough meta-data, Hk̂ is a strict
subset of Hkfull , and therefore

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

where the left relation is due to Theorem 4.3. Figure 2 illus-
trates the nested sets. We conclude that our meta-learned
hypothesis space has favorable properties: it contains the
true hypothesis space, and it is sparse in structure, in partic-
ular, smaller than the conservative candidate space.

The fact that Hk̂ is smaller than Hkfull reduces the complex-
ity of the downstream learning problem and yields faster
convergence rates. We provide an example of this effect
in Section 5, where we analyze a Bayesian optimization
problem, and establish how choosing k̂ improves upon kfull.
Finally, our experiments (e.g. Figure 4) support the claim
that in practice the BO algorithm is faster in finding the
optimum when it uses the meta-learned kernel.

Figure 2. The oracle Hk⇤ (Eq. 5), the meta-learned Hk̂ (Eq. 9) and
the hand-picked Hkfull (Eq. 10) hypothesis spaces (informal)

5. Sequential Decision-making with
META-KEL

We now analyze the effect of using k̂ as kernel function in
the downstream sequential decision-making problem. We
adopt the common construction of confidence sets given
in Equation (2), and define Ĉt�1(x) := Ct�1(k̂;x). We
let µ̂t�1(x) := µt�1(k̂;x), and �̂t�1(x) := �t�1(k̂;x),
where µt�1(k;x) and �t�1(k;x) are as defined in Equa-
tion (D.1), with time-varying �̄

2 = 1 + 2/t.3

3The functions µ̂t�1 and �̂t�1 are the posterior mean and vari-
ance of GP(0, k̂), conditioned on Ht�1, with noise variance �̄

2.

Theorem 5.1 shows that for the right choice of ⌫t, the set
Ĉt�1(x) is a valid confidence bound for any f 2 Hk⇤ ,
evaluated at any x 2 X , at any step t, with high probability.
Theorem 5.1 (Any-time Valid Confidence Bounds with
META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k

⇤

is unknown. Under the assumptions of Theorem 4.3, with
probability greater than 1� �, for all x 2 X and all t � 1,

|µ̂t�1(x)�f(x)| �̂t�1(x)

B

✓
1 +

✏(n,m)

2c1

◆

+ �

s

d̂ log

✓
1 +

�̄�2t

c1

◆
+ 2 + 2 log(1/�)

!

where d̂ =
P

j2Jk̂
dj and �̄

2 = 1 + 2/t.

The proof is given in Appendix C. As discussed in Section 4,
the ✏(n,m)/2c1 term shrinks faster than O(1/

p
mn) and

d̂ approaches d⇤ =
P

j2Jk⇤ dj at a similar rate. Therefore,
Theorem 5.1 presents a tight confidence bound relative to
the case when k

⇤ is known by the agent. In this case, due
to Chowdhury & Gopalan (2017), Theorem 2, the 1 � �

confidence bound would be,

|µt�1(x)�f(x)| �t�1(x)
⇣
B+

�

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

where the mean and variance functions are defined by
µt�1(x) := µt�1(k⇤;x) and �t�1(x) := �t�1(k⇤;x) with
�̄
2 = 1 + 2/t. We conclude that the base learner does not

require knowledge of the true kernel for constructing confi-
dence sets, as long as there is sufficient meta-data available.
Theorem 4.3 quantifies this notion of sufficiency.

Case Study: Bayesian Optimization As an example ap-
plication, we consider the classic Bayesian optimization
problem, but in the case where Hk⇤ is unknown. This ex-
ample illustrates how Theorem 5.1 may be used to prove
guarantees for a decision-making algorithm, which uses the
meta-learned kernel due to a lack of knowledge of k⇤. We
follow the setup and BO notation of Srinivas et al. (2010).
The agent seeks to maximize an unknown reward function
f , sequentially accessed as described in Equation (1). Their
goal is to choose actions xt which maximize the cumulative
reward achieved over T time steps. This is equivalent to min-
imizing the cumulative regret RT =

PT
t=1[f(x

⇤)� f(xt)],
where x⇤ is a global maximum of f . Note that if RT /T ! 0
as T ! 1 then max1tT f(xt) ! f(x⇤), i.e., the
learner converges to the optimal value. We will refer to
this property as sublinearity of the regret. In the spirit of
the GP-UCB algorithm (Srinivas et al., 2010), we choose
the next point by maximizing the upper confidence bound
as determined by Theorem 5.1

xt = argmax
x2X

µ̂t�1(x) + ⌫t�̂t�1(x) (11)

Meta-Learning Hypothesis Spaces

|Jk⇤ | s be the number candidate kernels that contribute to
k
⇤. If Assumption 4.2 holds with (s), then with probability

greater than 1 � �, the number of kernels active in k̂ is
bounded by

|Jk̂|
64s

mn2(s)

which implies that if mn >
64s

p2(s) , then with the same
probability

Hk̂ (Hkfull .

Hence, in the presence of enough meta-data, Hk̂ is a strict
subset of Hkfull , and therefore

Hk⇤
w.h.p.
✓ Hk̂

w.h.p.
(Hkfull

where the left relation is due to Theorem 4.3. Figure 2 illus-
trates the nested sets. We conclude that our meta-learned
hypothesis space has favorable properties: it contains the
true hypothesis space, and it is sparse in structure, in partic-
ular, smaller than the conservative candidate space.

The fact that Hk̂ is smaller than Hkfull reduces the complex-
ity of the downstream learning problem and yields faster
convergence rates. We provide an example of this effect
in Section 5, where we analyze a Bayesian optimization
problem, and establish how choosing k̂ improves upon kfull.
Finally, our experiments (e.g. Figure 4) support the claim
that in practice the BO algorithm is faster in finding the
optimum when it uses the meta-learned kernel.

Figure 2. The oracle Hk⇤ (Eq. 5), the meta-learned Hk̂ (Eq. 9) and
the hand-picked Hkfull (Eq. 10) hypothesis spaces (informal)

5. Sequential Decision-making with
META-KEL

We now analyze the effect of using k̂ as kernel function in
the downstream sequential decision-making problem. We
adopt the common construction of confidence sets given
in Equation (2), and define Ĉt�1(x) := Ct�1(k̂;x). We
let µ̂t�1(x) := µt�1(k̂;x), and �̂t�1(x) := �t�1(k̂;x),
where µt�1(k;x) and �t�1(k;x) are as defined in Equa-
tion (D.1), with time-varying �̄

2 = 1 + 2/t.3

3The functions µ̂t�1 and �̂t�1 are the posterior mean and vari-
ance of GP(0, k̂), conditioned on Ht�1, with noise variance �̄

2.

Theorem 5.1 shows that for the right choice of ⌫t, the set
Ĉt�1(x) is a valid confidence bound for any f 2 Hk⇤ ,
evaluated at any x 2 X , at any step t, with high probability.
Theorem 5.1 (Any-time Valid Confidence Bounds with
META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k

⇤

is unknown. Under the assumptions of Theorem 4.3, with
probability greater than 1� �, for all x 2 X and all t � 1,

|µ̂t�1(x)�f(x)| �̂t�1(x)

B

✓
1 +

✏(n,m)

2c1

◆

+ �

s

d̂ log

✓
1 +

�̄�2t

c1

◆
+ 2 + 2 log(1/�)

!

where d̂ =
P

j2Jk̂
dj and �̄

2 = 1 + 2/t.

The proof is given in Appendix C. As discussed in Section 4,
the ✏(n,m)/2c1 term shrinks faster than O(1/

p
mn) and

d̂ approaches d⇤ =
P

j2Jk⇤ dj at a similar rate. Therefore,
Theorem 5.1 presents a tight confidence bound relative to
the case when k

⇤ is known by the agent. In this case, due
to Chowdhury & Gopalan (2017), Theorem 2, the 1 � �

confidence bound would be,

|µt�1(x)�f(x)| �t�1(x)
⇣
B+

�

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

where the mean and variance functions are defined by
µt�1(x) := µt�1(k⇤;x) and �t�1(x) := �t�1(k⇤;x) with
�̄
2 = 1 + 2/t. We conclude that the base learner does not

require knowledge of the true kernel for constructing confi-
dence sets, as long as there is sufficient meta-data available.
Theorem 4.3 quantifies this notion of sufficiency.

Case Study: Bayesian Optimization As an example ap-
plication, we consider the classic Bayesian optimization
problem, but in the case where Hk⇤ is unknown. This ex-
ample illustrates how Theorem 5.1 may be used to prove
guarantees for a decision-making algorithm, which uses the
meta-learned kernel due to a lack of knowledge of k⇤. We
follow the setup and BO notation of Srinivas et al. (2010).
The agent seeks to maximize an unknown reward function
f , sequentially accessed as described in Equation (1). Their
goal is to choose actions xt which maximize the cumulative
reward achieved over T time steps. This is equivalent to min-
imizing the cumulative regret RT =

PT
t=1[f(x

⇤)� f(xt)],
where x⇤ is a global maximum of f . Note that if RT /T ! 0
as T ! 1 then max1tT f(xt) ! f(x⇤), i.e., the
learner converges to the optimal value. We will refer to
this property as sublinearity of the regret. In the spirit of
the GP-UCB algorithm (Srinivas et al., 2010), we choose
the next point by maximizing the upper confidence bound
as determined by Theorem 5.1

xt = argmax
x2X

µ̂t�1(x) + ⌫t�̂t�1(x) (11)

Meta-Learning Hypothesis Spaces

where a suitable choice for ⌫t is suggested in Corollary 5.2.

Corollary 5.2 (A Regret Bound with META-KEL). Let
� 2 (0, 1). Suppose f 2 Hk⇤ with kfkk⇤ B and that
values of f are observed with zero-mean sub-Gaussian noise
of variance proxy �

2. Then, with probability greater than
1� �, GP-UCB used together with k̂ satisfies

RT = O
 q

d̂T log T
⇣
B
�
1 + ✏(n,m)

�

+
q

d̂ log T + log 1/�
⌘!

provided that the exploration coefficient is set to

⌫t =B
�
1 + ✏(n,m)/2c1

�

+ �

q
d̂ log (1 + �̄�2t/c1) + 2 + 2 log(1/�).

The proof is straightforward. Conditioned on the event
that f 2 Hk̂, we may directly use the regret bound of
Chowdhury & Gopalan (2017). Then, by Theorem 4.3,
we calculate the probability of this event (Appendix C.1).
The Corollary relies on knowledge of a bound B on kfkk⇤ .
However, using techniques of Berkenkamp et al. (2019) it
is possible to adapt it even to unknown B at increased (but
still sublinear) regret.

Corollary 5.2 shows that GP-UCB using the meta-
learned kernel guarantees sublinear regret. We obtain a
O(d̂B log T

p
T) rate for the regret which is tight compared

to the O(d⇤B log T
p
T) rate satisfied by the oracle. It is

insightful to compare this convergence result to a scenario
where the hypothesis space is misspecified. For a reward
function f /2 Hk̂, Bogunovic & Krause (2021) show that
the learner will not converge to the global optimum, since
the cumulative regret has a lower bound of linear order
O(T

p
log T). Corollary 5.2 suggests that by using a sparse

kernel we can potentially find the optimal policy faster com-
pared to when the complex kernel kfull is used. Recall that
d =

Pp
j=1 dj , by Theorem 2 of Chowdhury & Gopalan

(2017) the regret of GP-UCB used together with kfull is
bounded by O(dpB log T

p
T), since kfkkfull

= pkfkk⇤ .
Therefore, using the meta-learned kernel improves the re-
gret bound by a factor of d̂/(dp), implying that the solution
may be found faster. The results of our experiments in
Figure 4 support this argument.

Note that our approach to guarantee a sublinear regret for
GP-UCB without oracle knowledge of k⇤ naturally gener-
alizes to other sequential decision tasks. In particular, any
theoretical result relying on RKHS confidence intervals with
a known kernel can be immediately extended to use those
of the meta-learned kernel.

Figure 3. Calibration (left) and sharpness (right) experiment for
confidence sets given 4 training samples. Averaged over 50 runs,
k̂ always gives tight valid confidence intervals.

Figure 4. Simple and cumulative regret for GP-UCB. The algo-
rithm converges at a slower pace when using kfull.

6. Experiments
In this section, we provide experiments to quantitatively
illustrate our theoretical contribution.

Experiment Setup (1D) We create a synthetic dataset
based on our data model, Equations (1) and (4). We first
limit the domain to the 1-dimensional X = [�1, 1] and
use Legendre polynomials Pj as our features �j . The se-
quence (Pj)j�0 is a natural choice, since it provides an
orthonormal basis for L2(X). Moreover, Legendre poly-
nomials are eigenfunctions to dot-product kernels such as
the Neural Tangent Kernel (Jacot et al., 2018). We let
k
⇤(x, x0) =

P
j2Jk⇤ ⌘

⇤
jPj(x)Pj(x0), where Jk⇤ is a ran-

dom subset of {1, · · · , p}. Each ⌘
⇤
j is sampled indepen-

dently from the standard uniform distribution and the vec-

Meta-Learning Hypothesis Spaces

where a suitable choice for ⌫t is suggested in Corollary 5.2.

Corollary 5.2 (A Regret Bound with META-KEL). Let
� 2 (0, 1). Suppose f 2 Hk⇤ with kfkk⇤ B and that
values of f are observed with zero-mean sub-Gaussian noise
of variance proxy �

2. Then, with probability greater than
1� �, GP-UCB used together with k̂ satisfies

RT = O
 q

d̂T log T
⇣
B
�
1 + ✏(n,m)

�

+
q

d̂ log T + log 1/�
⌘!

provided that the exploration coefficient is set to

⌫t =B
�
1 + ✏(n,m)/2c1

�

+ �

q
d̂ log (1 + �̄�2t/c1) + 2 + 2 log(1/�).

The proof is straightforward. Conditioned on the event
that f 2 Hk̂, we may directly use the regret bound of
Chowdhury & Gopalan (2017). Then, by Theorem 4.3,
we calculate the probability of this event (Appendix C.1).
The Corollary relies on knowledge of a bound B on kfkk⇤ .
However, using techniques of Berkenkamp et al. (2019) it
is possible to adapt it even to unknown B at increased (but
still sublinear) regret.

Corollary 5.2 shows that GP-UCB using the meta-
learned kernel guarantees sublinear regret. We obtain a
O(d̂B log T

p
T) rate for the regret which is tight compared

to the O(d⇤B log T
p
T) rate satisfied by the oracle. It is

insightful to compare this convergence result to a scenario
where the hypothesis space is misspecified. For a reward
function f /2 Hk̂, Bogunovic & Krause (2021) show that
the learner will not converge to the global optimum, since
the cumulative regret has a lower bound of linear order
O(T

p
log T). Corollary 5.2 suggests that by using a sparse

kernel we can potentially find the optimal policy faster com-
pared to when the complex kernel kfull is used. Recall that
d =

Pp
j=1 dj , by Theorem 2 of Chowdhury & Gopalan

(2017) the regret of GP-UCB used together with kfull is
bounded by O(dpB log T

p
T), since kfkkfull

= pkfkk⇤ .
Therefore, using the meta-learned kernel improves the re-
gret bound by a factor of d̂/(dp), implying that the solution
may be found faster. The results of our experiments in
Figure 4 support this argument.

Note that our approach to guarantee a sublinear regret for
GP-UCB without oracle knowledge of k⇤ naturally gener-
alizes to other sequential decision tasks. In particular, any
theoretical result relying on RKHS confidence intervals with
a known kernel can be immediately extended to use those
of the meta-learned kernel.

Figure 3. Calibration (left) and sharpness (right) experiment for
confidence sets given 4 training samples. Averaged over 50 runs,
k̂ always gives tight valid confidence intervals.

Figure 4. Simple and cumulative regret for GP-UCB. The algo-
rithm converges at a slower pace when using kfull.

6. Experiments
In this section, we provide experiments to quantitatively
illustrate our theoretical contribution.

Experiment Setup (1D) We create a synthetic dataset
based on our data model, Equations (1) and (4). We first
limit the domain to the 1-dimensional X = [�1, 1] and
use Legendre polynomials Pj as our features �j . The se-
quence (Pj)j�0 is a natural choice, since it provides an
orthonormal basis for L2(X). Moreover, Legendre poly-
nomials are eigenfunctions to dot-product kernels such as
the Neural Tangent Kernel (Jacot et al., 2018). We let
k
⇤(x, x0) =

P
j2Jk⇤ ⌘

⇤
jPj(x)Pj(x0), where Jk⇤ is a ran-

dom subset of {1, · · · , p}. Each ⌘
⇤
j is sampled indepen-

dently from the standard uniform distribution and the vec-

Meta-Learning Hypothesis Spaces

i.e., exists dj < 1 where kj(x,x0) = �T (x)�(x0) and � 2 Rdj .

i.e., the sparsity patterns match with high probability.

Construct the confidence sets (see Equation 1)

Ct�1(k̂;x) = [µt�1(k̂;x)± ⌫t�t�1(k̂;x)]

⌫t = B

⇣
1 + ✏(n,m)

⌘
+ �

q
d̂ log (1 + �̄�2t) + 2 + 2 log(1/�)

For calculating µt�1 and �t�1, set �̄ = 1 + 2/t.

where d̂ is the dimension of k̂.

i.e., exists d̂ < 1 where k̂(x,x0) = �T (x)�(x0) where � 2 Rd̂

Theorem D.1 (Confidence Bounds with META-KEL). Let f 2 Hk⇤ with kfkk⇤ B, where k
⇤ is unknown. Under the

assumptions of the previous theorem, with probability greater than 1� �,

P
⇣
8x 2 X , 8t � 1 : f(x) 2 Ct�1(k̂;x)

⌘
� 1� �.

This theorem implies, with probability greater than 1� �

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘

As more meta-data is provided, i.e., as m and n grow, ✏(n,m) vanishes
and d̂ ! d

⇤, the dimension of k⇤.
With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Invalid

Valid but too wide

Valid and tight

True sets (valid)

Plug and play

Sequential
Decision-making

Task

Offline
Meta-Learning

2D synthetic data Legendre features

GLMNET data + RFF

[Friedman et al 2010]

[GP-UCB, Srinivas et al.]

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Sequential
Decision-making

Task

Offline
Meta-Learning

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

Meta-Learning Hypothesis Spaces

With oracle knowledge of k⇤,

|µt�1(k
⇤;x)� f(x)| �t�1(k

⇤;x)
⇣
B + �

q
d⇤ log

�
1 + �̄�2t

�
+ 2 + 2 log(1/�))

⌘
.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.

We let k⇤(x, x0) = 1
5

P
j2J⇤ Pj(x)Pj(x0), where Pj is a degree-j Leg-

endre polynomial and J
⇤ is a random subset of size 5 from {1, · · · , 20}.

Using this kernel, we generate a random meta-data set of size m = n = 50.
On a test task, with a fresh new function f

⇤, we assess the confidence sets
at t = 4. We check 1) if the sets are valid and 2) if they are tight.

We commit to confidence sets of the form,

Ct�1(k1;x)

Ct�1(k2;x)

Ct�1(k
⇤;x)

Ct�1(k̂;x)

Goal: Find k̂ such that these sets are valid,

Example: f is the objective function of a BO problem.

Plug and play

Sequential
Decision-making

Task

Offline
Meta-Learning

Applications

Bandits

Bayesian Optimization

Safe BO

Model-Based RL

Regret

Goal

Policy

Empirical width of the confidence band.

Empirical coverage of the confidence band
vs. the true 1� �

Both quantities are averages over a sample
of size 1000 from X . Error bars show stan-
dard error for 50 runs of the problem.

If applied to Bandit optimization, the sets imply a sublinear regret guaran-
tee for the GP-UCB algorithm using k̂. This regret bound approaches that
of the oracle algorithm.

