Meta-Learning Hypothesis Spaces for Sequential Decision-making
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Overview

> Obtaining reliable confidence sequences for unknown target functions 1s
a central challenge in sequential decision-making tasks, e.g., Bayesian
Optimization and model-based RL.

> These confidence sets are typically constructed by relying on oracle knowl-
edge of the hypothesis space, e.g., a known RKHS.

> We propose any-time valid confidence sets that rely on a meta-learned
hypothesis space, instead of assuming oracle knowledge.

> Applied to BO, our results imply a sublinear regret guarantee for the GP-
UCB algorithm using our meta-learned kernel. This bound approaches
that of the oracle algorithm as the amount of meta-data increases.

> Analysis of the regret that rely on RKHS confidence sets with a known
kernel can be immediately extended to use our meta-learned confidence
bounds, removing the dependency on the known kernel assumption.

Problem Setting

> Interacting with the environment
ye = (@) + &

f*: X >R, f* e Hp,

X C R%, compact k* unknown

x; € X, depends on the history e <B

e.: o sub-Gussian, i.i.d.

> Find k s.t. the confidence sets are valid

P (Va: CXVE>1: f*(x) € ct_l(/%;m)) >1-6

Ct—l(k§ m) — [Mt—l(k§ m) == VtUt—l(kS $)] (1)

Meta-Learning Model

> Data from similar tasks 1s available (fixed design)
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> Assume that true kernel can be decomposed as

p
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k*(wa L ) — Zﬁ;kj(a?,aj )
77 : unknown, non-negative j=1
k;: known, finite-dimensional

p < o0

Meta-Learned Confidence Sets
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(META-KEL)

Meta-Kel is convex, has a solution and optimizing it is as difficult
as the Group Lasso.

> Construct the confidence sets (see Equation 1)

A A A

Ci1(k;x) = [pe—1(k;x) £ viop_1(k; )]

Under mild regularity assumptions on the meta-data, with
probability greater than 1 — 0,

- ks sparse (in the sense of H77H1)

- H ng?

- For f € Hi3:

P(VxEX, Vt > 1: f(x) ECt_l(E}x)> >1-—0.

> This theorem implies, with probability greater than 1 — o

i1 (ki @) = f(@)] < 011 (ks @) (B +{Be(n, m) + o\ |dog (1 +572t) +2 + 2log(1/9)))

As more meta-data 1s provided, 1.e., as m and n grow,
e(n, m) vanishes and d — d*, the dimension of k*.

The meta-learned confidence bounds approach the oracle bounds,
as amounts of offline data grows.
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P S Ci_1(ko;x)  Invalid
Ci—1(k1;x)  Valid but too wide

Ci—1(k;x)  Valid and tight
Ct—l (k*, CIZ‘)
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Sequential Decision-making

> Plug and play

Algorithm (k)

META-KEL Agent
4 . Ce(k; z) h 4
Offline ] “ | Sequential

Meta-Learning . .‘ : Decision-making

x ' ; Task

Meta-data ‘A Environment -°
Oracle (k*)

> Applications

Bandits Safe BO

Bayesian Optimization Model-Based RL

> Example: f is the objective function of a BO problem.

Regret Rr =3,y [f (@) = f ()]
Goal Rr/T -0 T — ¢
Policy x, = arg max C;_1 (k; x)

xEX [GP-UCB, Srinivas et al.]

Provided that there is enough meta-data,
— T he learner achieves sublinear regret, w.h.p.

— This guarantee is tight compared to the one for the Or-
acle learner, and approaches it at a O(1/+/mn) rate.

> This theorem implies, with probability greater than 1 — 9

Ry = O(\/&TlogT(B(l + e(n,m)) + \/CZlogT+log 1/5))

[Friedman et al 2010]

2D synthetic data Legendre features GLMNET data + RFF
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