ETHZzurich

Anytime Model Selection in Linear Bandits

Parnian Kassraie, Nicolas Emmenegger, Andreas Krause, Aldo Pacchiano

Main Results

Choose actions x; * This gives ALEXP: Anytime Exponential weighting algorithm with
Lasso reward estimates

At every step t

Receive feedback vy

unknown reward

," Yy = 1r(xTs) + &4 ¢ |
E : 1.i.d. zero-mean sub-G J |Og M MS adaptlve
Repeat regret | guarantee | & anytime
v v v

* The statistical modeling of the reward function plays a crucial role
in efficiency of bandit algorithms -- they maintain an estimate of Algorithm 1 ALEXP
the target function, and use it to choose the next action.

Inputs: ¢, e, Ap for t >1

* It is not known a priori which model is going to yield the most fort > 1 do

sample efficient algorithm, and we can only select the right model Draw x; ~ (1 — ;) S:J{\fl gt jpr.j + veUnif(X)

as we gather empirical evidence. Observe y; = r(x:) + €.

. L hi H; = Hi_ .
* Online Model Selection is not fun and games. . - y ~ pd Append history 1 J (Xt ve))
Update agents p;; for yj =1,..., M.
Hiq = {(3317 y1)7 SO (mt—lv yt—l)} Calculate 6; < Lasso(H;, A+) and estimate
Reward maximization — not so diverse sample depdate selection distribution gt 1
end for

History dependence — non-i.i.d sample

Theorem (Regret - Informal)

Can we perform adaptive model selection, while simultaneously

optimizing for a reward? Can we be sample-efficient & anytime? For appropriate choices of parameters,

[prescribed in the paper]
* Our setting {p,: R R j=1,...,M} R(T)=0 (\/Tlog3 M+ T3/*\/log M)
3j* € [M]st. 7() =6, (-)
M >T

+ typical regularity assumptions Empirical |nsights

* Online Model Selection problem

w.h.p. simultaneously for all T > 1.
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Find 7 while maximizing for the unknown r o iy
T : : _
. — Sublinearin T M = 55 M =165 Many
R(T) — E ,74(m )_ T(wt) 15 - 15 - Models

+—1 — lOg M .
b 10 - 10 - /
s Correlated /
Models
Approach . |

* Probabilistic Aggregation: Instantiate M algorithm each using a 0 L—— . . . 0
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different qu to model the reward. Randomly iterate over them.
_ Distribution over the Ratio of visited agents
Model Selection models at time t=20 to total number of agents
g% il 0.150 -
Vi > 1 = 0.08 - Discards agents 0.125 -
@: r(xy) + € 0.06 - without having 0.100 -
| queried them
0.075 -
Optimization 0.04 1 00504 [ Rapidly recognizes top
002 - agents and whp selects
| 0.025- among them
. .. . . , , , , 0.000 L, . .
* With probability 4¢.jchoose agent j and let them choose an action 0-0077 0 100 150 0 50 100
according to their action selection policy p; ; € M(X)
Ingredient |: Exponential Weights Updates
Increase qt,; it the the agent seems to be lucrative Turn lasso into a online regression oracle
M
- .1 2
Estimate of the reward obtained by agent j so far 0, = arg min Z Hyt _ (I)tHHQ + At E : ||HJ'H2

exp (m i ) ‘

Theorem (Anytime Lasso Conf Seq)
M t—1
2_i—1 €XP (7775 2 o—1 ) If for all t > 1

dt,j =

sensitivity of updates

L :
* This technique is known to yield log M regret in full-info setting, At = ﬁ\/log(M/(S) +\/d (log(M/0) + (log log d) ;)

when all 7¢; are known. But now, the regret will depend on the

. . A then,
bias and variance of 0, Restricted Eigenvalue property
e Typical online regression oracles are vV M — polyM regret P (Vt > 1 ||g —0,| < 2(Cfl>)\t2)) >1-_9
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