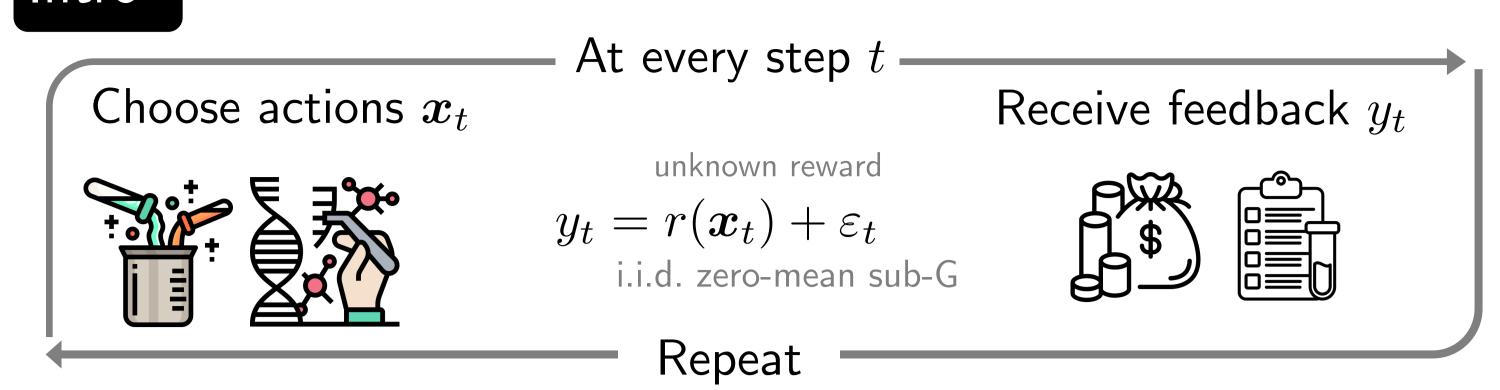
EHZürich

Anytime Model Selection in Linear Bandits

Parnian Kassraie, Nicolas Emmenegger, Andreas Krause, Aldo Pacchiano

Intro



- The statistical modeling of the reward function plays a crucial role in efficiency of bandit algorithms they maintain an estimate of the target function, and use it to choose the next action.
- It is not known a priori which model is going to yield the most sample efficient algorithm, and we can only select the right model as we gather empirical evidence.
- Online Model Selection is not fun and games. $oldsymbol{x}_t \in \mathcal{X} \subset \mathbb{R}^{d_0}$

$$H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$$

Reward maximization \rightarrow not so diverse sample History dependence \rightarrow non-i.i.d sample

Can we perform adaptive model selection, while simultaneously optimizing for a reward? Can we be sample-efficient & anytime?

- Our setting $\{\phi_j\}$
 - $\{oldsymbol{\phi}_j: \mathbb{R}^{d_0}
 ightarrow \mathbb{R}^d, j=1,\ldots,M\}$ $\exists \, j^\star \in [M] ext{ s.t. } r(\cdot) = oldsymbol{ heta}_{j^\star}^ op oldsymbol{\phi}_{j^\star}(\cdot)$ $M \gg T$

+ typical regularity assumptions

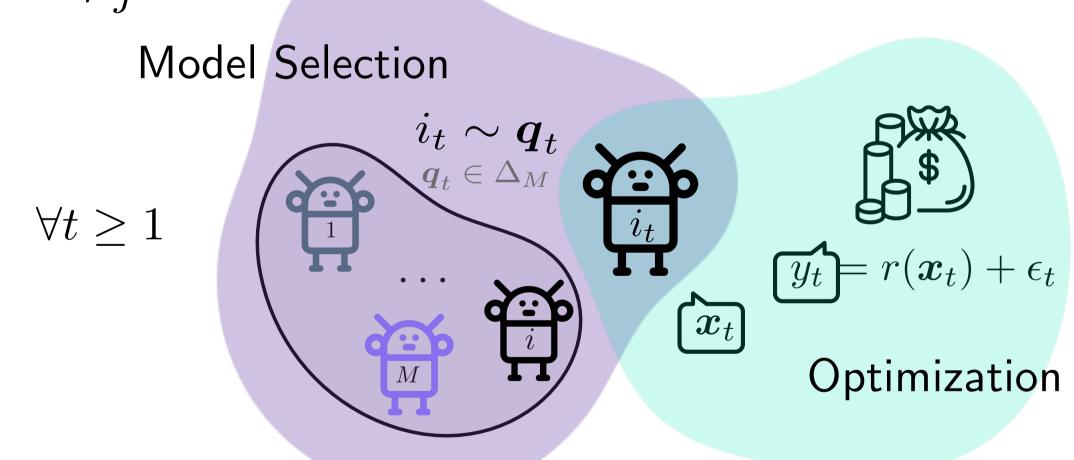
Online Model Selection problem

Find j^* while maximizing for the unknown r

$$R(T) = \sum_{t=1}^{T} r(\mathbf{x}^{\star}) - r(\mathbf{x}_t)$$
 — Sublinear in T — $\log M$

Approach

• Probabilistic Aggregation: Instantiate M algorithm each using a different ϕ_j to model the reward. Randomly iterate over them.



• With probability $q_{t,j}$ choose agent j and let them choose an action according to their action selection policy $p_{t,j} \in \mathcal{M}(\mathcal{X})$

Main Results

• This gives ALEXP: Anytime Exponential weighting algorithm with Lasso reward estimates

log M	MS	adaptive
regret	guarantee	& anytime

Algorithm 1 ALEXP

Inputs: $\gamma_t, \, \eta_t, \, \lambda_t$ for $t \geq 1$ for $t \geq 1$ do

Draw $\mathbf{x}_t \sim (1 - \gamma_t) \sum_{j=1}^M q_{t,j} p_{t,j} + \gamma_t \mathrm{Unif}(\mathcal{X})$ Observe $y_t = r(\mathbf{x}_t) + \epsilon_t$.

Append history $H_t = H_{t-1} \cup \{(\mathbf{x}_t, y_t)\}$.

Update agents $p_{t,j}$ for $j = 1, \ldots, M$.

Calculate $\hat{\theta}_t \leftarrow \mathrm{Lasso}(H_t, \lambda_t)$ and estimate $\hat{r}_{t,j}$ Update selection distribution $q_{t+1,j}$

Theorem (Regret - Informal)

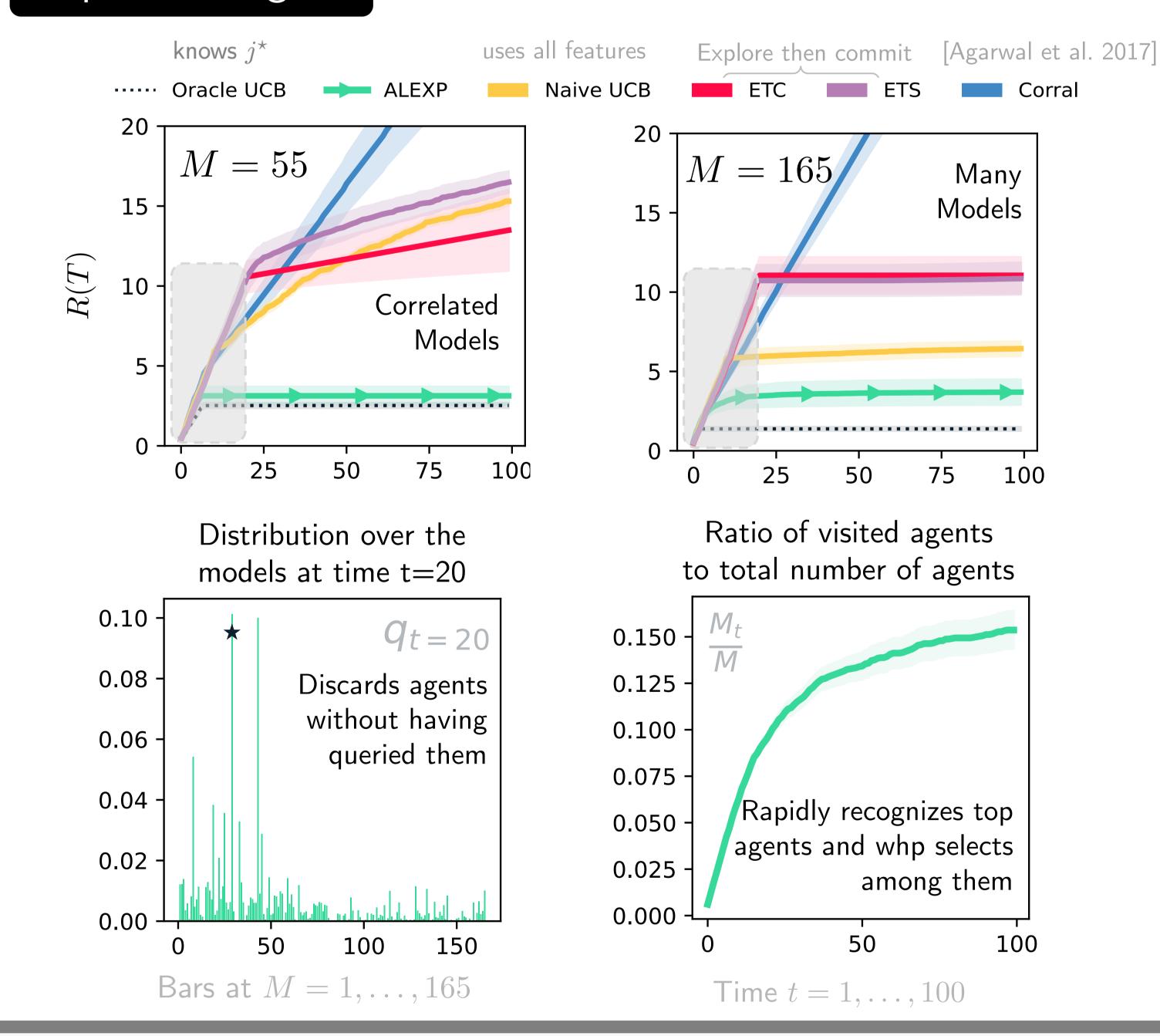
For appropriate choices of parameters, [prescribed in the paper]

$$R(T) = \tilde{\mathcal{O}}\left(\sqrt{T\log^3 M} + T^{3/4}\sqrt{\log M}\right)$$

w.h.p. simultaneously for all $T \geq 1$.

Empirical Insights

end for



Ingredient I: Exponential Weights Updates

Increase $q_{t,j}$ if the the agent seems to be lucrative

Estimate of the reward obtained by agent j so far $q_{t,j} = \frac{\exp\left(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,j}\right)}{\sum_{i=1}^{M} \exp\left(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,i}\right)} \quad \hat{r}_{t,j} = \mathbb{E}_{\boldsymbol{x} \sim p_{t,j}} \hat{\boldsymbol{\theta}}_t^{\top} \boldsymbol{\phi}(\boldsymbol{x})$ sensitivity of updates

- This technique is known to yield $\log M$ regret in full-info setting, when all $r_{t,j}$ are known. But now, the regret will depend on the bias and variance of $\hat{\pmb{\theta}}_t$
- Typical online regression oracles are $\sqrt{M}
 ightarrow {
 m poly} M$ regret

Ingredient II: Sparse Online Regression Oracle

 \mathbf{r} Turn lasso into a sparse online regression oracle

$$\hat{\boldsymbol{\theta}}_t = \arg\min \frac{1}{t} ||\boldsymbol{y}_t - \Phi_t \boldsymbol{\theta}||_2^2 + \lambda_t \sum_{j=1}^{M} ||\boldsymbol{\theta}_j||_2$$

Theorem (Anytime Lasso Conf Seq)

If for all t > 1

then,

Bias and variance are both $\log M$

$$\lambda_t \geq \frac{c_1}{\sqrt{t}} \sqrt{\log(M/\delta) + \sqrt{d\left(\log(M/\delta) + (\log\log d)_+\right)}}$$

cost of going 'time uniform'

Restricted Eigenvalue property

$$\mathbb{P}\left(\forall t \geq 1: \left\|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_t\right\|_2 \leq \frac{c_2 \lambda_t}{\kappa^2(\Phi_t, 2)}\right) \geq 1 - \delta$$