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Solving a Linear Bandit problem : At every step

1. Commit to a reward model (a priori) () + 3
) ) =T\ E
2. Interact with the environment to Yt t t y)

maximize reward Repeat

There are many ways to model r
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{Qb] RT =R » J = 17T ) M} M > T horizon/stopping time
35" € [M] s.t. 7(-) = 0.0, (")

Not known a priori which model is going to yield the best algo.

... but we can guess based on emprical evidence.

Anytime Model Selection problem

Find 5* while maximizing for the unknown r

— Sublinearin T
VT > 1 R(T) = r(x™) — r(x
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Online Model Selection problem

Find 7* while maximizing for the unknown r

VI > 1 - ' i
= ZT — () Sublinear in T

1 — log M
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Why do we need to select? i

Why not just try out everything?

linear in T

t=1 — 10g M

Instatiate M algorithms each using a different model

Run all algorithms in parallel

Repeat for t =1,...T Statistically expensive
N :
T ——{%ﬁ v =ri@) +e ES%J k-1 High regret
T ) P t = T\t t 2
| g §
i Repeat fort =1,...T pOIY(M)
\m/
M
>
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Our Solution: Probabilistic Aggregation

@ Randomly iterate over the agents and at each step play only one

e ~ gy
q: € Ay

Play one agent, but update all.

Reward not observed? it

Tune the probability of the agent.
G T i 7 7

ETH:zlirich

ﬁﬂ

= T(wt) -+ €¢

y Update all agents
'ga Update q,
Choose your very
carefully!

Choose your update rule very
carefully!
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Putting it all together: ALExp

Anytime Exponential weighting algorithm with Lasso reward estimates

Algorithm 1 ALEXP

Inputs: ¢, n, A for t > 1

for t > 1 do
Draw x; ~ (1 — v¢) Zj‘il e jptj + e Unif(X)
Observe y; = r(x;) + €.
Append history Hy = Hy—1 U {(x¢, y+)}.
Update agents p;j for j=1,..., M.
Calculate 0, « Lasso(H:, A\¢) and estimate

Update selection distribution

eXP(Ut 22:1 Fs,j)
M "
St exp(ne Yooy Fs,i)

de+1,j
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Putting it all together: ALExp

Anytime Exponential weighting algorithm with Lasso reward estimates

Algorithm 1 ALEXP

Inputs: ¢, n, A for t > 1

for t > 1 do
Draw x; ~ (1 — 7¢) Zj‘il e jptj + e Unif(X)
Observe y; = r(x;) + €.
Append history Hy = Hy—1 U {(x¢, y+)}.
Update agents p;j for j=1,..., M.
Calculate 0, « Lasso(H:, A\¢) and estimate

prescribed in the paper

Update selection distribution Theorem (Online Model Selection) ‘

For appropriate choices of parameters,

exp(n: 22:1 Fs,j)

M t o
D=1 &xP(1e Doy Fs,i) R(T)=0 (\/ T log® M + T3/4\/ log M)

w.h.p. simultaneously for all T > 1.

qt+1,j
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data generation & baselines described in the paper.

Synthetic Experiments

knows j* uses all features Explore then commit [Agarwal et al. 2017]
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