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,Goal: sublinear regret

Setting: continuous & kernelized
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Challenges
• Continuous action space
• Qualitative preference feedback
• Costly sampling
• Complexity of exploration & exploitation

Contributions
• Stackelberg Game formulation
• Practical confidence bounds for 

kernelized utilities
• No-regret guarantee
• Very promising performance
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Applications in RLHF
adaptive fine-tuning of LLMs to niche 
domains, personalized & pluralist usage

Learning w Finite Recall
choosing an action from recent history 
to improve costs & feedback quality

Welfare Maximization
accepting feedback from multiple 

sources and aggregating the preference

regret of logistic bandit on Ackley 
reward using different conf. seqs.
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

Restricting the optimization domain to Mt ⇢ X is common in the literature [Zoghi et al., 2014a, Saha,
2021] despite being challenging in applications with large or continuous domains. We conjecture that
MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain to Mt

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried
out without such restriction on the optimization domain.

6 Experiments

Our experiments are on finding the maxima of test functions commonly used in (non-convex)
optimization literature [Jamil and Yang, 2013], given only preference feedback. These functions
cover challenging optimization landscapes including several local optima, plateaus, and valleys,
allowing us to test the versatility of MAXMINLCB. We use the Ackley function for illustration
in the main text and provide the regret plots for the remainder of the functions in Appendix E. For
all experiments, we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over
the input domain of size 100. All experiments are run across 20 random seeds and reported values
are averaged over the seeds, together with standard error. The environments and algorithms are
implemented1 end-to-end in JAX [Bradbury et al., 2018].

6.1 Benchmarking Confidence Sets

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality
of our kernelized confidence bounds, using the potentially simpler task of bandit optimization given
logistic feedback. To this end, we fix the acquisition function for the logistic bandit algorithms to
the Upper Confidence Bound (UCB) function, and benchmark different methods for calculating the
confidence bound. We refer to the algorithm instantiated with the confidence sets of Theorem 2 as
LGP-UCB (c.f. Algorithm 2). The IND-UCB approach assumes that actions are uncorrelated, and
maintains an independent confidence interval for each action as in Lattimore and Szepesvári [2020,
Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation between actions. We also
implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear function, i.e., f(x) = ✓

Tx
to highlight the improvements gained by kernelization. Last, we compare LGP-UCB with GP-UCB
[Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized ridge regression task. This
comparison highlights the benefits of using our kernelized logistic estimator (Proposition 1) over
regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a].
Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the baselines. GP-UCB
performs closest to LGP-UCB, however, it accumulates regret linearly during the initial steps. Note
that GP-UCB and LGP-UCB differ in the estimation of the utility function ft while estimating
the width of the confidence bounds similarly. This result suggests that using the logistic-type loss
(3) to infer the utility function is advantageous. As expected, IND-UCB converges at a slower rate
than LGP-UCB and GP-UCB due to ignoring the correlation between arms while LOG-UCB1’s

1The code is made available at github.com/lasgroup/MaxMinLCB.
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+ many more synthetic functions
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Preference-based inference is equivalent to learning 
with direct feedback, up to choice of kernel. 

check the paper for formal statement.
View actions as players in a Stackelberg Game
• With objective              , both players choose
• True preference is unknown
• Approximate it with a lower-bound
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via backward induction

Organically balances exploration & exploitation
• What’s the role of the Leader?
• What’s the role of the Follower?

Acquisition function
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xt = argmax
x
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s.t. !(x) = argmin
x 0

LCBt(x � x 0)

x 0
t = !(xt)

Acquisition function
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Acquisition function
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xt = argmax
x

LCBt(x � !(x))

s.t. !(x) = argmin
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LCBt(x � x 0)

x 0
t = !(xt)

Leader

Follower

MaxMinLCB Acquisition Function

To construct a lower-bound for
•            estimates the utility gap
•            quantifies the estimation uncertainty
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