Progressive Entropic Optimal Transport

Parnian Kassraie

with Aram Pooladian, Michal Klein, James Thornton Jon Niles-Weed & Marco Cuturi

Optimal Transport

How do you solve it?

In full generality, OT does not have a solution or is very tough to solve. Entropic OT adds a regularization term to make things better:

$$\inf_{\pi\in\Gamma(\nu,\mu)}\int \|x-y\|_2^2 \,\mathrm{d}\pi(x,y) + \varepsilon \,\mathrm{D}_{\mathrm{KL}}\left(\pi\|\mu\otimes\nu\right)$$

Given $\hat{\mu}$, $\hat{\nu}$: Sinkhorn's algorithm can solve this and return \hat{T}_{ε} and $\hat{\pi}_{\varepsilon}$ Small ε : the algorithm may not converge

Large ε :

Our solution: ProgOT

Send the static OT problem with the dynamic perspective.

Solve a series of EOT problems, with reduced sensitivity to ε

- Elevates issue of regularization parameter
- Convergences to the ground truth (statistical guarantee)
- Competitive performance, scalable, and computationally light

We can repeat this K times to get $T_{\text{Prog}}^{(K)}$

Theoretical guarantee

 T_0 : OT map between μ & ν

Theorem (Non-Asymptotic Consistency)

Given n i.i.d. samples from μ and ν , for an appropriate choice of $(\varepsilon_k)_k$ and $(\alpha_k)_k$, the K-step progressive map $T_{Prog}^{(K)}$ satisfies

$$\mathbb{E} \left\| T_{Prog}^{(k)} - T_0 \right\|_{L^2(\mu)}^2 \lesssim n^{-\frac{1}{d}}, \qquad \text{Independent of K!}$$

under regularity assumptions on μ , ν , and the true map T_0 .

Proof idea: The intermediate steps of ProgOT are on the Wasserstein geodesic.

Ground truth is known: MSE between the maps over test points

SinkDiv between the predicted target and the test target point cloud

[more in the paper]

Scalability

σ		2	4
Sinkhorn	$\operatorname{Tr}(\pi_{\varepsilon})$	0.9999	0.9954
	$\operatorname{KL}(\pi^{\star} \pi_{\varepsilon})$	0.00008	0.02724
	# iterations	10	2379
ProgOT	$\operatorname{Tr}(\pi_{\operatorname{Prog}})$	1.000	0.9989
	$\mathrm{KL}(\pi^{\star} \pi_{\mathrm{Prog}})$	0.00000	0.00219
	# iterations	40	1590

15' to de-blur CIFAR10

(\w sharding on 8gpus)

impossible using neural OT solvers

The bigger picture

ProgOT

- Light, off-the-shelf, competitive baseline
- Blending static and dynamic views of OT
- [paper], [JAX tutorial]

Follow-ups

- Scaling Limit
- Continuous time extension/implications

OT Applications

- Unbalanced OT
- The Schrödinger Bridge

Other Applications

- Drug purtubations
- Robust generation
- Preference Learning

Thank You

References

- 1. C. Bunne, et al. Learning single-cell perturbation responses using neural optimal transport. Nature Methods, 2023.
- 2. C. Bunne, et al. Optimal transport for singlecell and spatial omics. *Nature Reviews Methods Primers* 4, 2024.
- 3. I. Melnyk, et al. Distributional Preference Alignment of LLMs via Optimal Transport. *arXiv*, 2024.
- 4. R. Liu, et al. Zero-shot preference learning for offline RL via optimal transport." *arXiv*, 2023.
- 5. Munos, Rémi, et al. "Nash learning from human feedback." *arXiv arXiv*, 2023.
- 6. Neu, Gergely, et al. "A unified view of entropy-regularized markov decision processes." *arXiv*, 2017.