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How do you solve it?

In full generality, OT does not have a solution or is very tough to solve.

Entropic OT adds a regularization term to make things better:
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Given [i, 0: Sinkhorn's algorithm can solve this and return 7. and #.
Small : the algorithm may not converge
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Our solution: ProgOT
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\\O</ Blend the static OT problem with the dynamic perspective.

Solve a series of , with reduced sensitivity to ¢
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» Elevates issue of regularization parameter
» Convergences to the ground truth (statistical guarantee)
* Competitive performance, scalable, and computationally light



ProgOT algorithm
L

Solve Entropic OT with large g

Linearly Interpolate

plh) = {(1 — ap)ld + OéoE(O)} L

Reduce €1 and repeat
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We can repeat this K times to get Prog



Theoretical guarantee
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To: OT map between u & v Prog:

ProgOT map between [,, & 7,

Theorem (Non-Asymptotic Consistency)

Given n i.i.d. samples from 1 and v, for an appropriate choice
of (ex)k and (ay )k, the K-step progressive map T,(J;)g satisfies
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under regularity assumptions on i, v, and the true map Ty.

Proof idea: The intermediate of ProgOT are on the Wasserstein geodesic.



Map estimation

ProgOT outperforms other map estimators, including neural ones.
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d =128 d = 256
PROGOT {0.099+0.009| 0.12+0.01
EOT 0.12+0.01 | 0.16£0.02
Debiased EOT| 0.11£0.01 |0.128=+0.002
Untuned EOT |0.250£0.023|0.276+£0.006
Monge Gap | 0.36+0.02 [0.27340.005
ICNN 0.17740.023|0.11740.005

Ground truth is known: MSE
between the maps over test points

°
a1
Single?Cell data (sci-Plex3)
.r.;
£
treated ,, Sque ety
. control
X
Drug Hesperadin 5-drug
dpca 16 64 256 rank
PROGOT |3.740.4/10.1+0.4|23.1+04| 1
EOT 4.1+0.4{10.4+0.5| 26+£1.3 2
Debiased EOT|4.04+0.5{15.2+0.6| 41+£1.1 4
3% Monge Gap [3.7£0.5|11.04+0.5| 36+1.1 3
ICNN 3.940.4114.3+0.5| 46+2 5

SinkDiv between the predicted target
and the test target point cloud

[more in the paper]



Coupling recovery

ProgOT attains lower OT cost and lower entropy, at a lower
Single-Cell data (4i)

computational cost.

Cost = Zi,je[n] ﬁ'zﬂh(.fz — yj)

Entropy = Zi,je[n] — 75,5 l0g Ty
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[more in the paper]



Scalability

60k CIFARL0 images . s
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o 2 4
Sihorn Tr(r.) 0.0999 | 0.9954
KL(7*[[7.) | 0.00008 | 0.02724
# iterations 10 2379
Tr(7prog) 1.000 | 0.9989
PROGOT R ¥ [rrprog) | 000000 | 0.00219
# iterations 40 1590

impossible using neural OT solvers

blurred CIFAR
(gaussian kernel o = 4)

15" to de-blur CIFAR10
(\w sharding on 8gpus)



The bigger picture s

(ProgOT )

* Light, off-the-shelf, competitive baseline
* Blending static and dynamic views of OT
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Follow-ups OT Applications Other Applications
e Scaling Limit e Unbalanced OT * Drug purtubations
* Continuous time * The Schrodinger Bridge * Robust generation

extension /implications * Preference Learning


https://arxiv.org/abs/2406.05061
https://ott-jax.readthedocs.io/en/latest/tutorials/linear/700_progot.html
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