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Anytime Model Selection

At every step ¢
The statistical modeling of the reward

function plays a crucial role in efficiency A $
of bandit algorithms: we choose actions ! t t J

based on reward estimates. Repeat

There are many ways to model r

. d d . _
{Qb] RT =R » J = 17T ) M} M > T horizon/stopping time
35" € [M] s.t. 7(-) = 0.0, (")

Not known a priori which model is going to yield the best algo.
... but we can guess based on emprical evidence.
Anytime Model Selection problem
Find 5* while maximizing for the unknown r
vT > 1 R(T) = ZT(ZB*) —r(zy) — Sublinearin T
— — log M
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Find j* Do classical methods work here? r
Is this harder than offline model
VI'>1 selection? linearin T
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Find j* Do classical methods work here? r
Is this harder than offline model
VT'>1 selection? linearin T

t=1

Lower Data Quality
Hy 1 ={(z1,y1), -, (Te—1,Yt—1)}

Reward maximization — not so diverse sample

History dependence — non-i.i.d sample

Stronger Guarantee

Valid for all stopping times

Cannot perform MS and then Inference/Opt post selection
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Our Solution: Probabilistic Aggregation of Experts

- Instantiate M algorithms each using a different @; to model the
reward. Iterate over them.

Vit >1
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With probability ¢: ; choose algorithm j and let them choose an
action according to their action

Increase if the the algorithm
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How to and aggregate?

-(Q- Turn lasso into a sparse online regression oracle

M

. ! 2

0; = argmlng ly, — @:0|]5 + )‘tz ||9j||2
j=1
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How to and aggregate? Vi>1

-(Q- Turn lasso into a sparse online regression oracle

M
- .1 2
6; = argmin n ly, — @015 + A Z 16511,
j=1
Theorem (Anytime Lasso Conf Seq)
If forall t > 1

At > %\/Iog(M/é) ++/d (log(M/5) + {I-o_ggg__o’)_j_ﬁ — EiBNPt,j Ht Qb(il?)
cost of going ‘time uniform’ average reward of algo j
then,

Restricted Eigenvalue property
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How to and aggregate? Vi>1

-(Q- Turn lasso into a sparse online regression oracle

M
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Theorem (Anytime Lasso Conf Seq)
If forall t > 1

A

a [ ... e e==== _
A > 71?\/Iog(M/5) ++/d (log(M/5) + (Io_g Ii)g_d)_+5 — E:L'Npt,j Ht ¢<x>
cost of going ‘time uniform’ average reward of algo j
then,

Restricted Eigenvalue property

A C2>\t
6—0 < —— | >1-9
’ o = ,@2(¢t,2)> -

@ Exponential Weighting How lucrative algo j seems
t—1
exXp (77t Zszl )
M t—1
S exp (m )

IP’(VtZl:

dt,j =
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Result: ALEXP

Anytime Exponential weighting algorithm with Lasso reward estimates

Theorem (Regret - Informal) adaptive
For appropriate choices of parameters, & argt'me
R(T)=0 (\/Tlog3M+ T3/4\/log M) log M
regret
w.h.p. simultaneously for all T > 1. 4
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20 -
/ ------ Oracle
. 15 4
Works well even if ALEXP
[ Use all feature maps
the feature maps are &~ 101
Correlated Ej‘/ [ MS then optimize

5 - / mm Corral (an online MS baseline)

g

O i" T T T T
ETH:zUrich 0 25 50 75 100 6



265 5

20 5

11,3 5

0.5 A

ETH:zlirich

50

100

Thank you!

Experiments:

ETC

ETS

100

(@]
o



ETH:zlirich

Algorithm 1 ALEXP

Inputs: V¢, ne, At for t > 1
fort > 1 do

Draw x; ~ ( | ZJAil +
Observe y; = r(x;) + €;.

Append history Hy = Hy_1 U {(x¢, y¢)}.
Update agents p;j for j =1,..., M.

Calculate 8; < Lasso(H;, \¢) and estimate

Update selection distribution

exp(ne Yooy Fsj)
M R
D i1 &xp(n 2221 Fs.i)

dt+1,j



Synthetic Experiments

knows j* Using all features Lasso variable selection
------ Oracle UCB ALEXP Naive UCB m ETC m ETS
20 - 20
Many
— ] 151 Models
o
10 A 10 -
= Correlated
5 - / Models 5 4
. | | | | Y — e S |
25 50 75 100 25 50 75 100
M = 55 M = 165
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Model Selection Dynamics of ALExp

Let's see how things evolve turing training...

Distribution over the models Number of visited agents
at time t=20 Total number of agents
0.10
* 0.150 -
0.08 - 0.125 -
0.075 -
0.04
0.050 -
0.02 0.025 A
0.00 T T T 0.000 4 T T
0 50 100 150 0 50 100
Discards agents without Rapidly recognizes top agents
having queried them and whp selects among them
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Online Model Selection problem

Find 5> r

Why do we need to select?
Why not just try out everything?  Riincarin 7

M

Instatiate M algorithms each using a different model

Run all algorithms in parallel

Repeat fort =1,...T Stat|5tlca||y expensive

o, ) .

o~ - k=—1 High regret

= ----"" {% ye = 7(Ts) + &4 @J

11

, poly (M)

M
—
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Classical Solution: Explore then Commit

For 1y steps, take i.i.d. samples following a uniform, or “diverse”
distribution

Use Group Lasso for |mpI|C|1t model selection L 0=(0y,...,0,) € RM
- 1 5 |
6 = arg min T()Hy (1)9H2+)‘;||93H2

o(x) = (¢1(z),. .., Pn(T))

For the remaining steps, always do

T
x; = argmax 0 ¢(x)

Under good choice of Ty and A satisfies,

R(T) = O(y/T?log M)  w.h.p.
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