Model Selection for Sequential Inference & Optimization

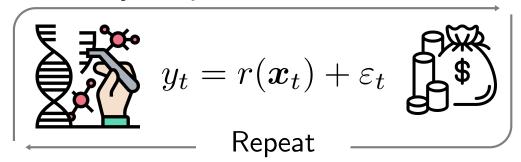
Parnian Kassraie, ETH Zurich

joint work with: Nicolas Emmenegger, Andreas Krause, Aldo Pacchiano

image source: flaticon

Anytime Model Selection

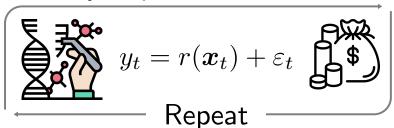
At every step t



mage source: flaticon

Anytime Model Selection

The statistical modeling of the reward function plays a crucial role in efficiency of bandit algorithms: we choose actions based on reward estimates. At every step t



Anytime Model Selection

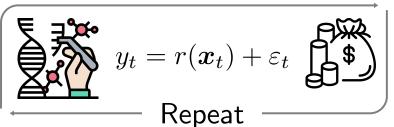
The statistical modeling of the reward function plays a crucial role in efficiency of bandit algorithms: we choose actions based on reward estimates.

There are $\frac{many}{many}$ ways to model r

$$\left\{ oldsymbol{\phi}_j : \mathbb{R}^{d_0}
ightarrow \mathbb{R}^d, \ j = 1, \dots, M
ight\}$$

 $\exists j^\star \in [M] \ \mathrm{s.t.} \ r(\cdot) = oldsymbol{ heta}_{j^\star}^ op oldsymbol{\phi}_{j^\star}(\cdot)$

At every step *t*

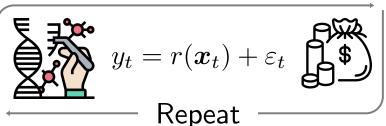


 $M\gg T$ horizon/stopping time

Anytime Model Selection

The statistical modeling of the reward function plays a crucial role in efficiency of bandit algorithms: we choose actions based on reward estimates.

At every step *t*



There are $\frac{many}{many}$ ways to model r

$$\left\{oldsymbol{\phi}_j: \mathbb{R}^{d_0}
ightarrow \mathbb{R}^d, \ j=1,\ldots,M
ight\}$$

 $\exists j^\star \in [M] \ ext{s.t.} \ r(\cdot) = oldsymbol{ heta}_{j^\star}^ op oldsymbol{\phi}_{j^\star}(\cdot)$

 $M\gg T$ horizon/stopping time

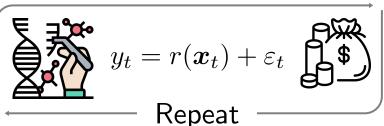
Not known a priori which model is going to yield the best algo.

... but we can guess based on emprical evidence.

Anytime Model Selection

The statistical modeling of the reward function plays a crucial role in efficiency of bandit algorithms: we choose actions based on reward estimates.

At every step *t*



There are many ways to model r

$$\left\{oldsymbol{\phi}_j: \mathbb{R}^{d_0}
ightarrow \mathbb{R}^d, \ j=1,\ldots,M
ight\}$$

 $\exists j^\star \in [M] \ ext{s.t.} \ r(\cdot) = oldsymbol{ heta}_{j^\star}^ op oldsymbol{\phi}_{j^\star}(\cdot)$

 $M\gg T$ horizon/stopping time

Not known a priori which model is going to yield the best algo.

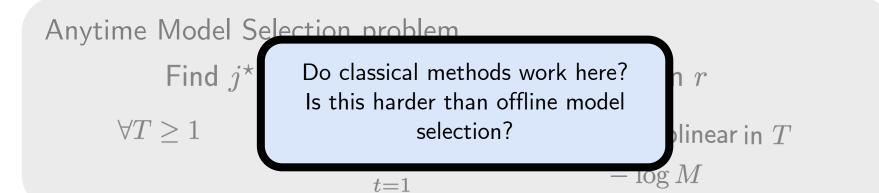
... but we can guess based on emprical evidence.

Anytime Model Selection problem

Find j^* while maximizing for the unknown r

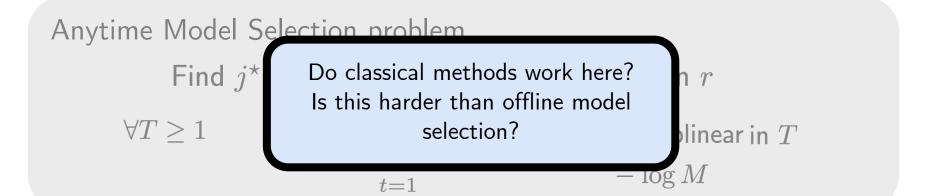
$$orall T \geq 1$$
 $R(T) = \sum_{t=1}^T r(\boldsymbol{x}^\star) - r(\boldsymbol{x}_t)$ — Sublinear in $T - \log M$

t=1



$$H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$$

Reward maximization \rightarrow not so diverse sample History dependence \rightarrow non-i.i.d sample



$$H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$$

Reward maximization \rightarrow not so diverse sample History dependence \rightarrow non-i.i.d sample

Stronger Guarantee

Valid for all stopping times

Cannot perform MS and then Inference/Opt post selection

age source: flaticon

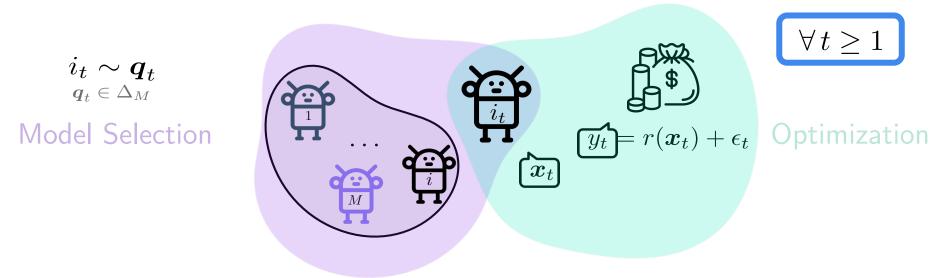
Our Solution: Probabilistic Aggregation of Experts

Instantiate M algorithms each using a different ϕ_j to model the reward. Iterate over them.

 $\forall t \geq 1$

Our Solution: Probabilistic Aggregation of Experts

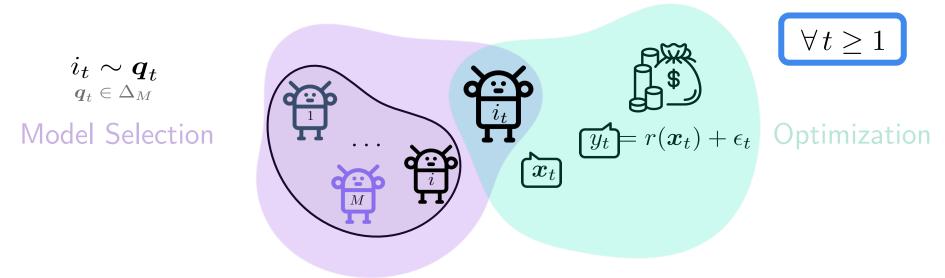
Instantiate M algorithms each using a different ϕ_j to model the reward. Iterate over them.



With probability $q_{t,j}$ choose algorithm j and let them choose an action according to their action selection policy $p_{t,j} \in \mathcal{M}(\mathcal{X})$

Our Solution: Probabilistic Aggregation of Experts

Instantiate M algorithms each using a different ϕ_j to model the reward. Iterate over them.



With probability $q_{t,j}$ choose algorithm j and let them choose an action according to their action selection policy $p_{t,j} \in \mathcal{M}(\mathcal{X})$

Increase $q_{t,j}$ if the the algorithm seems to be lucrative

How to estimate and aggregate?

- Turn lasso into a sparse online regression oracle

$$\hat{\boldsymbol{\theta}}_t = \arg\min \frac{1}{t} ||\boldsymbol{y}_t - \boldsymbol{\Phi}_t \boldsymbol{\theta}||_2^2 + \lambda_t \sum_{j=1}^M ||\boldsymbol{\theta}_j||_2 \quad \boldsymbol{\phi}(\boldsymbol{x}) = (\boldsymbol{\phi}_1(\boldsymbol{x}), \dots, \boldsymbol{\phi}_M(\boldsymbol{x}))$$
$$\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M) \in \mathbb{R}^{dM}$$

How to estimate and aggregate?

- Turn lasso into a sparse online regression oracle

$$\hat{\boldsymbol{\theta}}_t = rg \min \frac{1}{t} || \boldsymbol{y}_t - \Phi_t \boldsymbol{\theta} ||_2^2 + \lambda_t \sum_{j=1}^M || \boldsymbol{\theta}_j ||_2$$

$$oldsymbol{\phi}(oldsymbol{x}) = (oldsymbol{\phi}_1(oldsymbol{x}), \ldots, oldsymbol{\phi}_M(oldsymbol{x})) \ oldsymbol{ heta} = (oldsymbol{ heta}_1, \ldots, oldsymbol{ heta}_M) \in \mathbb{R}^{dM}$$

Theorem (Anytime Lasso Conf Seq)

If for all $t \geq 1$

$$\lambda_t \geq \frac{c_1}{\sqrt{t}} \sqrt{\log(M/\delta) + \sqrt{d\left(\log(M/\delta) + (\log\log d)_+\right)}}$$

cost of going 'time uniform'

then,

Restricted Eigenvalue property

$$\mathbb{P}\left(\forall t \geq 1: \ \left\|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_t\right\|_2 \leq \frac{c_2 \lambda_t}{\kappa^2(\Phi_t, 2)}\right) \geq 1 - \delta$$

$$\hat{r}_{t,j} = \mathbb{E}_{oldsymbol{x} \sim p_{t,j}} \hat{oldsymbol{ heta}}_t^{ op} oldsymbol{\phi}(oldsymbol{x})$$

average reward of algo i

How to estimate and aggregate?

- Turn lasso into a sparse online regression oracle

$$\hat{\boldsymbol{\theta}}_t = \arg\min \frac{1}{t} ||\boldsymbol{y}_t - \boldsymbol{\Phi}_t \boldsymbol{\theta}||_2^2 + \lambda_t \sum_{j=1}^M ||\boldsymbol{\theta}_j||_2 \quad \boldsymbol{\phi}(\boldsymbol{x}) = (\boldsymbol{\phi}_1(\boldsymbol{x}), \dots, \boldsymbol{\phi}_M(\boldsymbol{x}))$$

$$\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_M) \in \mathbb{R}^{dM}$$

$$oldsymbol{\phi}(oldsymbol{x}) = (oldsymbol{\phi}_1(oldsymbol{x}), \ldots, oldsymbol{\phi}_M(oldsymbol{x})) \ oldsymbol{ heta} = (oldsymbol{ heta}_1, \ldots, oldsymbol{ heta}_M) \in \mathbb{R}^{dM}$$

Theorem (Anytime Lasso Conf Seq)

If for all $t \geq 1$

$$\lambda_t \geq \frac{c_1}{\sqrt{t}} \sqrt{\log(M/\delta) + \sqrt{d\left(\log(M/\delta) + (\log\log d\right)_+)}}$$

cost of going 'time uniform'

then,

Restricted Eigenvalue property

$$\mathbb{P}\left(\forall t \geq 1: \ \left\|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_t\right\|_2 \leq \frac{c_2 \lambda_t}{\kappa^2(\Phi_t, 2)}\right) \geq 1 - \delta$$

$$\hat{r}_{t,j} = \mathbb{E}_{oldsymbol{x} \sim p_{t,j}} \hat{oldsymbol{ heta}}_t^ op oldsymbol{\phi}(oldsymbol{x})$$

average reward of algo i

Exponential Weighting

How lucrative algo i seems

$$q_{t,j} = \frac{\exp\left(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,j}\right)}{\sum_{i=1}^{M} \exp\left(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,i}\right)}$$

Result: ALEXP

Anytime Exponential weighting algorithm with Lasso reward estimates

Theorem (Regret - Informal)

For appropriate choices of parameters,

$$R(T) = \tilde{\mathcal{O}}\left(\sqrt{T\log^3 M} + T^{3/4}\sqrt{\log M}\right)$$

w.h.p. simultaneously for all $T \geq 1$.

Result: ALEXP

Anytime Exponential weighting algorithm with Lasso reward estimates

Theorem (Regret - Informal)

For appropriate choices of parameters,

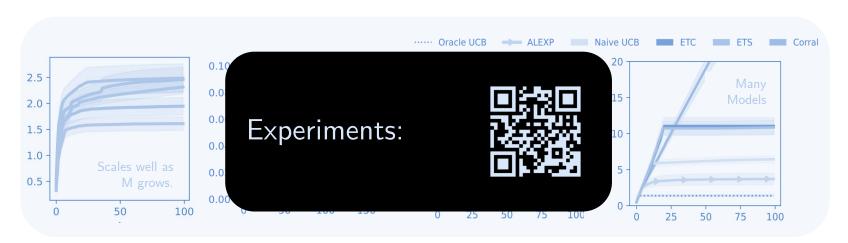
$$R(T) = \tilde{\mathcal{O}}\left(\sqrt{T\log^3 M} + T^{3/4}\sqrt{\log M}\right)$$

w.h.p. simultaneously for all $T \geq 1$.

Works well even if the feature maps are correlated



Thank you!



Algorithm 1 ALEXP

Inputs: γ_t , η_t , λ_t for $t \ge 1$ **for** $t \ge 1$ **do** Draw $\mathbf{x}_t \sim (1 - \gamma_t) \sum_{j=1}^{M} q_{t,j} p_{t,j} + \gamma_t \mathsf{Unif}(\mathcal{X})$ Observe $y_t = r(\mathbf{x}_t) + \epsilon_t$.

Append history $H_t = H_{t-1} \cup \{(\boldsymbol{x}_t, y_t)\}.$

Update agents $p_{t,j}$ for j = 1, ..., M.

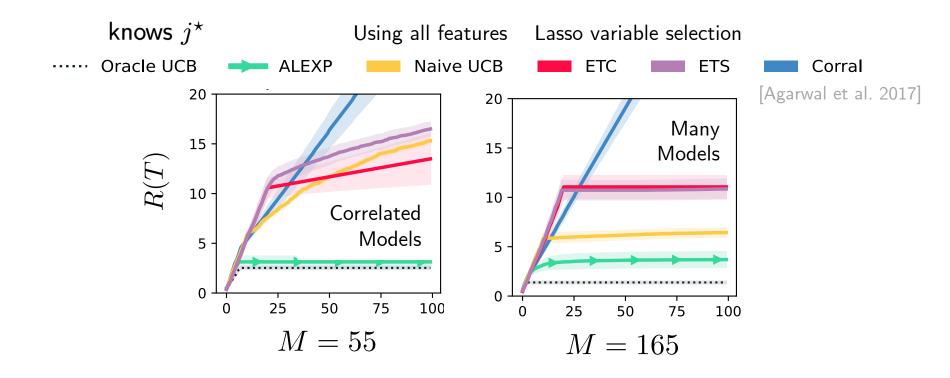
Calculate $\hat{\theta}_t \leftarrow \mathsf{Lasso}(H_t, \lambda_t)$ and estimate

$$\hat{r}_{t,j} \leftarrow \mathbb{E}_{{m{x}} \sim p_{t+1,j}} [\hat{m{ heta}}_t^ op \phi({m{x}})]$$

Update selection distribution

$$q_{t+1,j} \leftarrow \frac{\exp(\eta_t \sum_{s=1}^t \hat{r}_{s,j})}{\sum_{i=1}^M \exp(\eta_t \sum_{s=1}^t \hat{r}_{s,i})}$$

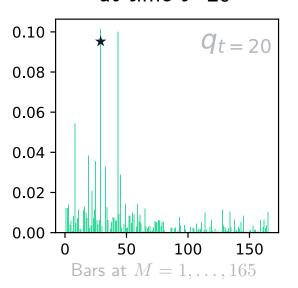
Synthetic Experiments



Model Selection Dynamics of ALExp

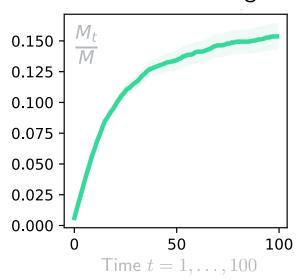
Let's see how things evolve turing training...

Distribution over the models at time t=20

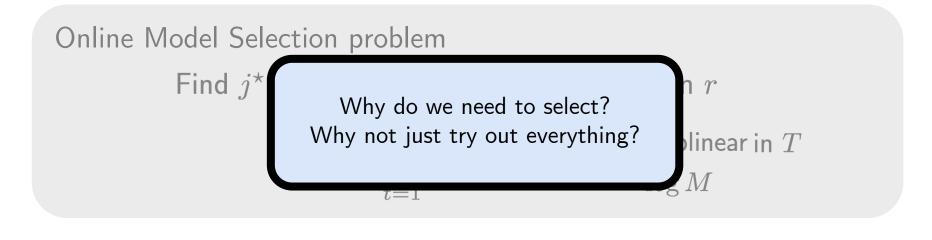


Discards agents without having queried them

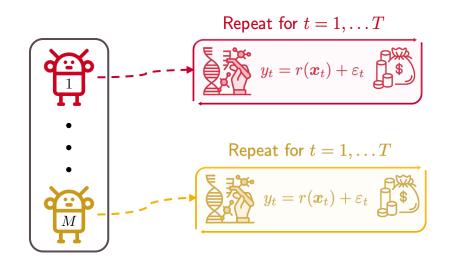
Number of visited agents Total number of agents



Rapidly recognizes top agents and whp selects among them



Instatiate M algorithms each using a different model Run all algorithms in parallel



Statistically expensive ←→ High regret

Classical Solution: Explore then Commit

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution

Use Group Lasso for implicit model selection

asso for implicit model selection
$$m{ heta} = (m{ heta}_1,\dots,m{ heta}_M) \in \mathbb{R}^{dM}$$
 $\hat{m{ heta}} = rg \min rac{1}{T_0} \|m{y} - \Phi m{ heta}\|_2^2 + \lambda \sum_{j=1}^M \|m{ heta}_j\|_2$

 $\phi(\boldsymbol{x}) = (\phi_1(\boldsymbol{x}), \dots, \phi_M(\boldsymbol{x}))$

For the remaining steps, always do

$$oldsymbol{x}_t = rg \max \ \hat{oldsymbol{ heta}}^ op oldsymbol{\phi}(oldsymbol{x})$$

Under good choice of T_0 and λ satisfies,

$$R(T) = \mathcal{O}(\sqrt[3]{T^2 \log M})$$
 w.h.p.