Model Selection for Sequential Inference and Decision-making

Parnian Kassraie, ETH Zurich

Sequential Decision-Making & Bandits: Problem

At every step *t*

Choose actions $oldsymbol{x}_t$

unknown reward

$$y_t = r(\boldsymbol{x}_t) + \varepsilon_t$$

obsv.noise

Receive feedback y_t

Repeat

Sequential Decision-Making & Bandits: Problem

At every step t

Choose actions $oldsymbol{x}_t$

unknown reward $y_t = r(oldsymbol{x}_t) + arepsilon_t$

obsv.noise

Receive feedback y_t

Repeat

Goal: Choose actions that give a high reward

$$R(T) = \sum_{t=1}^{T} r(\boldsymbol{x}^{\star}) - r(\boldsymbol{x}_{t})$$

Sequential Decision-Making & Bandits: Problem

At every step t

Choose actions $oldsymbol{x}_t$

unknown reward $y_t = r(oldsymbol{x}_t) + arepsilon_t$

obsv.noise

Receive feedback y_t

Repeat

Goal: Choose actions that give a high reward

$$R(T) = \sum_{t=1}^{T} r(\boldsymbol{x}^{\star}) - r(\boldsymbol{x}_{t})$$

Motivation: maximize r using the fewest queries

ource: flaticon

Sequential Decision-Making & Bandits: Solutions

To take actions at every step:

To take actions at every step:

- Estimate the reward function

based on:

Statistical model for the reward e.g. r is a linear function

history
$$H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$$

To take actions at every step:

- Estimate the reward function

based on: Statistical model for the reward e.g. r is a linear function history $H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$

- Use reward estimate to choose the next action

To take actions at every step:

 $y_t = r(\boldsymbol{x}_t) + \varepsilon_t$

- Estimate the reward function

based on:

Statistical model for the reward e.g. r is a linear function

history
$$H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$$

- Use reward estimate to choose the next action

(better) estimate r explore

maximize r exploit

To take actions at every step:

- Estimate the reward function

based on:

Statistical model for the reward e.g. r is a linear function

history
$$H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$$

- Use reward estimate to choose the next action

(better) estimate r explore

maximize r exploit Many principles: optimism, expected improvement, entropy search

To take actions at every step:

$$y_t = r(\boldsymbol{x}_t) + \varepsilon_t$$

- Estimate the reward function

based on:

Statistical model for the reward e.g. r is a linear function

history
$$H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$$

- Use reward estimate to choose the next action

Many principles: optimism, expected improvement, entropy search

(better) estimate r explore

maximize r exploit

Heavily rely on the choice of model — Model selection is key!

To take actions at every step:

- Estimate the reward function

Statistical model for the reward e.g. r is a linear function based on: history $H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$

- Use reward estimate to choose the next action

(better) estimate r explore

maximize r exploit

Model selection in this setting is not fun and games...

To take actions at every step:

- Estimate the reward function

based on:

Statistical model for the reward e.g. r is a linear function

history
$$H_{t-1} = \{(x_1, y_1), \dots, (x_{t-1}, y_{t-1})\}$$
 samples are non-i.i.d

- Use reward estimate to choose the next action

(better) estimate r explore

maximize r exploit

Model selection in this setting is not fun and games...

To take actions at every step:

$$y_t = r(\boldsymbol{x}_t) + \varepsilon_t$$

- Estimate the reward function

based on:

Statistical model for the reward e.g. r is a linear function

history
$$H_{t-1} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{t-1}, y_{t-1})\}$$

samples are non-i.i.d

- Use reward estimate to choose the next action

(better) estimate r explore

maximize r exploit

samples are not so diverse

Model selection in this setting is not fun and games...

To take actions at every step:

Statistical model for the reward e.g. r is a linear function based on:

history
$$H_{t-1} = \{(x_1, y_1), \dots, (x_{t-1}, y_{t-1})\}$$
 samples are non-i.i.d

- Use reward estimate to choose the next action

(better) estimate r explore

maximize r exploit

samples are not so diverse

Model selection in this setting is not fun and games...

Open problem: when is online model selection possible?

mage source: flaticon

Online Model Selection problem

Find j^* while maximizing for the unknown r

$$R(T) = \sum_{t=1}^{T} r(\boldsymbol{x}^{\star}) - r(\boldsymbol{x}_{t}) - \text{Sublinear in } T - \log M$$

Instatiate M algorithms each using a different model

Instatiate M algorithms each using a different model Run all algorithms in parallel

Instatiate M algorithms each using a different model Run all algorithms in parallel

Statistically expensive ←→ High regret

poly(M)

$$m{x}_t \in \mathcal{X} \subset \mathbb{R}^{d_0}$$
 $y_t = r(m{x}_t) + arepsilon_t$ i.i.d. zero-mean sub-gaussian noise

$$m{x}_t \in \mathcal{X} \subset \mathbb{R}^{d_0}$$
 $y_t = r(m{x}_t) + arepsilon_t$ i.i.d. zero-mean sub-gaussian noise

The reward is linearly parametrized by an unknown feature map

Model Class
$$\left\{m{\phi}_j: \mathbb{R}^{d_0} o \mathbb{R}^d, \, j=1,\ldots,M
ight\} \qquad M \gg T$$
 $\exists j^\star \in [M] ext{ s.t. } r(\cdot) = m{ heta}_{j^\star}^ op \phi_{j^\star}(\cdot)$ $+ ext{ typical bdd assump. } \|r\|_\infty \leq B$

$$m{x}_t \in \mathcal{X} \subset \mathbb{R}^{d_0}$$
 $y_t = r(m{x}_t) + arepsilon_t$ i.i.d. zero-mean sub-gaussian noise

The reward is linearly parametrized by an unknown feature map

Model Class
$$\left\{m{\phi}_j:\mathbb{R}^{d_0} o\mathbb{R}^d,\,j=1,\ldots,M
ight\} \qquad M\gg T$$
 $\exists j^\star\in[M] ext{ s.t. } r(\cdot)=m{ heta}_{j^\star}^ opm{\phi}_{j^\star}(\cdot)$ $+$ typical bdd assump. $\|r\|_\infty\leq B$

Online Model Selection problem:

Find j^* while maximizing for the unknown r

$$m{x}_t \in \mathcal{X} \subset \mathbb{R}^{d_0}$$
 $y_t = r(m{x}_t) + arepsilon_t$ i.i.d. zero-mean sub-gaussian noise

The reward is linearly parametrized by an unknown feature map

Model Class
$$\left\{m{\phi}_j: \mathbb{R}^{d_0} o \mathbb{R}^d, \ j=1,\ldots,M
ight\} \qquad M \gg T$$
 $\exists j^\star \in [M] ext{ s.t. } r(\cdot) = m{ heta}_{j^\star}^ op m{\phi}_{j^\star}(\cdot)$ $+ ext{ typical bdd assump. } \|r\|_\infty \leq B$

Online Model Selection problem:

Find j^* while maximizing for the unknown r

$$R(T) = \sum_{t=1}^{T} r(\boldsymbol{x}^{\star}) - r(\boldsymbol{x}_{t}) - \text{Sublinear in } T - \log M$$

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution

Use Group Lasso for implicit model selection $\hat{\boldsymbol{\theta}} = \arg\min\frac{1}{T_0}\|\boldsymbol{y} - \Phi\boldsymbol{\theta}\|_2^2 + \lambda\sum_{j=1}^M \|\boldsymbol{\theta}_j\|_2$ $\boldsymbol{\phi}(\boldsymbol{x}) = (\boldsymbol{\phi}_1(\boldsymbol{x}), \dots, \boldsymbol{\phi}_M(\boldsymbol{x}))$

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution

Use Group Lasso for implicit model selection

asso for implicit model selection
$$m{ heta} = (m{ heta}_1,\dots,m{ heta}_M) \in \mathbb{R}^{dM}$$
 $\hat{m{ heta}} = rg \min rac{1}{T_0} \|m{y} - \Phi m{ heta}\|_2^2 + \lambda \sum_{j=1}^M \|m{ heta}_j\|_2$

 $\phi(\boldsymbol{x}) = (\phi_1(\boldsymbol{x}), \dots, \phi_M(\boldsymbol{x}))$

For the remaining steps, always do

$$oldsymbol{x}_t = rg \max \ \hat{oldsymbol{ heta}}^ op oldsymbol{\phi}(oldsymbol{x})$$

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution

Use Group Lasso for implicit model selection

$$\hat{\boldsymbol{\theta}} = \arg\min \frac{1}{T_0}\|\boldsymbol{y} - \Phi\boldsymbol{\theta}\|_2^2 + \lambda \sum_{j=1}^M \|\boldsymbol{\theta}_j\|_2$$

 $\phi(\boldsymbol{x}) = (\phi_1(\boldsymbol{x}), \dots, \phi_M(\boldsymbol{x}))$

For the remaining steps, always do

$$oldsymbol{x}_t = rg \max \ \hat{oldsymbol{ heta}}^ op oldsymbol{\phi}(oldsymbol{x})$$

$$R(T) = \mathcal{O}(\sqrt[3]{T^2 \log M})$$
 w.h.p.

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution

Use the Lasso for implicit model selection

$$\hat{\boldsymbol{ heta}} = rg \min rac{1}{T_0} \| oldsymbol{y} - \Phi oldsymbol{ heta} \|_2^2 + \lambda \sum_{j=1}^M \| oldsymbol{ heta}_j \|_2$$

For the remaining steps, always do

$$oldsymbol{x}_t = rg \max \, \hat{oldsymbol{ heta}}^ op oldsymbol{\phi}(oldsymbol{x})$$

$$R(T) = \mathcal{O}(\sqrt[3]{T^2 \log M})$$
 w.h.p.

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution $\frac{1}{2BT_0}$

Use the Lasso for implicit model selection

$$\hat{oldsymbol{ heta}} = rg \min rac{1}{T_0} \|oldsymbol{y} - \Phi oldsymbol{ heta}\|_2^2 + \lambda \sum_{j=1}^M \|oldsymbol{ heta}_j\|_2$$

For the remaining steps, always do

$$oldsymbol{x}_t = rg \max \, \hat{oldsymbol{ heta}}^ op oldsymbol{\phi}(oldsymbol{x})$$

$$R(T) = \mathcal{O}(\sqrt[3]{T^2 \log M})$$
 w.h.p.

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution $\frac{1}{2BT_0}$

Use the Lasso for implicit model selection

$$\hat{oldsymbol{ heta}} = rg \min rac{1}{T_0} \|oldsymbol{y} - \Phi oldsymbol{ heta}\|_2^2 + \lambda \sum_{j=1}^M \|oldsymbol{ heta}_j\|_2$$

Relies on Lasso variable selection

For the remaining steps, always do

$$oldsymbol{x}_t = rg \max \, \hat{oldsymbol{ heta}}^ op oldsymbol{\phi}(oldsymbol{x})$$

$$R(T) = \mathcal{O}(\sqrt[3]{T^2 \log M})$$
 w.h.p.

For T_0 steps, take i.i.d. samples following a uniform, or "diverse" distribution $\frac{1}{2BT_0}$

Use the Lasso for implicit model selection

$$\hat{oldsymbol{ heta}} = rg \min rac{1}{T_0} \|oldsymbol{y} - \Phi oldsymbol{ heta}\|_2^2 + \lambda \sum_{j=1}^M \|oldsymbol{ heta}_j\|_2$$

Relies on Lasso variable selection

For the remaining steps, always do

$$oldsymbol{x}_t = rg \max \, \hat{oldsymbol{ heta}}^ op oldsymbol{\phi}(oldsymbol{x})$$

Is not any-time: only works if horizon T is known in advance

$$R(T) = \mathcal{O}(\sqrt[3]{T^2 \log M})$$
 w.h.p.

image source: flaticon

ETHZÜRİCİN Learning & Adaptive Systems

Online Model Selection

mage source: flaticon

Online Model Selection

Instead of commiting to a single model,

Randomly iterate over the models and at each step choose one

Online Model Selection

Instead of commiting to a single model,

Randomly iterate over the models and at each step choose one Instatiate M "agents"

Agent j only uses ϕ_i to model the reward

Has action selection strategy $p_{t,j} \in \mathcal{M}(\mathcal{X})$ which is updated at every step e.g. UCB [for those who know]

Instead of commiting to a single model,

Randomly iterate over the models and at each step choose one Instatiate M "agents"

Agent j only uses ϕ_j to model the reward

Has action selection strategy $p_{t,j} \in \mathcal{M}(\mathcal{X})$ which is updated at every step e.g. UCB [for those who know]

Instead of commiting to a single model,

Randomly iterate over the models and at each step choose one Instatiate M "agents"

Agent j only uses ϕ_j to model the reward

Has action selection strategy $p_{t,j} \in \mathcal{M}(\mathcal{X})$ which is updated at every step e.g. UCB [for those who know]

Instead of commiting to a single model,

Randomly iterate over the models and at each step choose one Instatiate M "agents"

Agent j only uses ϕ_j to model the reward

Has action selection strategy $p_{t,j} \in \mathcal{M}(\mathcal{X})$ which is updated at every step e.g. UCB [for those who know]

Update $oldsymbol{q}_t$ Update all agents

Instead of commiting to a single model,

Randomly iterate over the models and at each step choose one Instatiate M "agents"

Agent j only uses ϕ_j to model the reward

Has action selection strategy $p_{t,j} \in \mathcal{M}(\mathcal{X})$ which is updated at every step e.g. UCB [for those who know]

Update $oldsymbol{q}_t$ Update all agents

Requires having observed the reward for the choice of each agent

Reward not observed? Hallucinate it.

- Turn group lasso into a sparse online regression oracle

$$orall \, t \geq 1$$
 $\hat{oldsymbol{ heta}}_t = rg \min rac{1}{t} \left| |oldsymbol{y}_t - \Phi_t oldsymbol{ heta}|
ight|_2^2 + \lambda_t \sum_{j=1}^M \left| |oldsymbol{ heta}_j|
ight|_2$

- Turn group lasso into a sparse online regression oracle

$$\forall t \geq 1$$
 $\hat{\boldsymbol{\theta}}_t = \arg\min \frac{1}{t} ||\boldsymbol{y}_t - \Phi_t \boldsymbol{\theta}||_2^2 + \lambda_t \sum_{j=1}^M ||\boldsymbol{\theta}_j||_2$

Theorem (Anytime Lasso Conf Seq)

For appropriate choice of $(\lambda_t)_{t\geq 1}$,

$$\mathbb{P}\left(orall t \geq 1: \ \left\|oldsymbol{ heta} - \hat{oldsymbol{ heta}}_t
ight\|_2 \lessapprox \sqrt{rac{\mathsf{log}(M/\delta)}{t}}
ight) \geq 1 - \delta$$

- Turn group lasso into a sparse online regression oracle

$$\forall t \geq 1$$
 $\hat{\boldsymbol{\theta}}_t = \arg\min \frac{1}{t} ||\boldsymbol{y}_t - \Phi_t \boldsymbol{\theta}||_2^2 + \lambda_t \sum_{j=1}^M ||\boldsymbol{\theta}_j||_2$

Theorem (Anytime Lasso Conf Seq)

For appropriate choice of $(\lambda_t)_{t\geq 1}$,

cost of going 'time uniform' is $\log \log d!$

$$\left\| \mathbb{P}\left(orall t \geq 1: \ \left\| oldsymbol{ heta} - \hat{oldsymbol{ heta}}_t
ight\|_2 \lessapprox \sqrt{rac{\mathsf{log}(M/\delta)}{t}}
ight) \geq 1 - \delta$$

Variance & bias are both $\log M$

- Turn group lasso into a sparse online regression oracle

$$\forall t \geq 1$$
 $\hat{\boldsymbol{\theta}}_t = \arg\min \frac{1}{t} ||\boldsymbol{y}_t - \Phi_t \boldsymbol{\theta}||_2^2 + \lambda_t \sum_{j=1}^M ||\boldsymbol{\theta}_j||_2$

Theorem (Anytime Lasso Conf Seq)

For appropriate choice of $(\lambda_t)_{t>1}$,

cost of going 'time uniform' is $\log \log d!$

$$\left\| \mathbb{P}\left(orall t \geq 1: \ \left\| oldsymbol{ heta} - \hat{oldsymbol{ heta}}_t
ight\|_2 \lessapprox \sqrt{rac{\mathsf{log}(\mathcal{M}/\delta)}{t}}
ight) \geq 1 - \delta$$

Variance & bias are both $\log M$

Hallucinate the reward of agent j as

$$\hat{r}_{t,j} = \mathbb{E}_{m{x} \sim p_{t,j}} \hat{m{ heta}}_t^{ op} m{\phi}(m{x})$$
 $p_{t,j} \in \mathcal{M}(\mathcal{X})$ action selection strategy

increase $q_{t,j}$ if $\hat{r}_{t,j}$ was high

Exponential Weighting

$$q_{t,j} = \frac{\exp(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,j})}{\sum_{i=1}^{M} \exp(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,i})}$$

$$\hat{r}_{t,j} = \mathbb{E}_{oldsymbol{x} \sim p_{t,j}} \hat{oldsymbol{ heta}}_t^ op oldsymbol{\phi}(oldsymbol{x})$$

Estimate of the reward obtained by agent i so far

$$q_{t,j} = \frac{\exp(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,j})}{\sum_{i=1}^{M} \exp(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,i})}$$

$$\hat{r}_{t,j} = \mathbb{E}_{oldsymbol{x} \sim p_{t,j}} \hat{oldsymbol{ heta}}_t^ op oldsymbol{\phi}(oldsymbol{x})$$

Estimate of the reward obtained by agent j so far

$$q_{t,j} = \frac{\exp(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,j})}{\sum_{i=1}^{M} \exp(\eta_t \sum_{s=1}^{t-1} \hat{r}_{s,i})}$$
sensitivity of updates

$$\hat{r}_{t,j} = \mathbb{E}_{oldsymbol{x} \sim p_{t,j}} \hat{oldsymbol{ heta}}_t^ op oldsymbol{\phi}(oldsymbol{x})$$

Find j^\star while maximizing for the unknown r Anytime Exponential weighting algorithm with Lasso reward estimates

Find j^{\star} while maximizing for the unknown r

Anytime Exponential weighting algorithm with Lasso reward estimates

Algorithm 1 ALEXP

Inputs: γ_t , η_t , λ_t for $t \ge 1$

for $t \ge 1$ do

Draw $m{x}_t \sim (1-\gamma_t) \sum_{j=1}^M q_{t,j} p_{t,j} + \gamma_t \mathsf{Unif}(\mathcal{X})$

Observe $y_t = r(\mathbf{x}_t) + \epsilon_t$.

Append history $H_t = H_{t-1} \cup \{(\mathbf{x}_t, y_t)\}.$

Update agents $p_{t,j}$ for $j = 1, \dots, M$.

Calculate $\hat{\theta}_t \leftarrow \mathsf{Lasso}(H_t, \lambda_t)$ and estimate

$$\hat{r}_{t,j} \leftarrow \mathbb{E}_{oldsymbol{x} \sim p_{t+1,j}} [\hat{oldsymbol{ heta}}_t^ op \phi(oldsymbol{x})]$$

$$q_{t+1,j} \leftarrow \frac{\exp(\eta_t \sum_{s=1}^t \hat{r}_{s,j})}{\sum_{i=1}^M \exp(\eta_t \sum_{s=1}^t \hat{r}_{s,i})}$$

Find j^{\star} while maximizing for the unknown r

Anytime Exponential weighting algorithm with Lasso reward estimates

Algorithm 1 ALEXP

Inputs: γ_t , η_t , λ_t for $t \geq 1$

for $t \ge 1$ do

Draw $m{x}_t \sim (1-\gamma_t) \sum_{j=1}^M m{q}_{t,j} m{p}_{t,j} + \gamma_t \mathsf{Unif}(\mathcal{X})$

Observe $y_t = r(\mathbf{x}_t) + \epsilon_t$.

Append history $H_t = H_{t-1} \cup \{(\mathbf{x}_t, y_t)\}.$

Update agents $p_{t,j}$ for j = 1, ..., M.

Calculate $\hat{\theta}_t \leftarrow \mathsf{Lasso}(H_t, \lambda_t)$ and estimate

$$\hat{r}_{t,j} \leftarrow \mathbb{E}_{oldsymbol{x} \sim p_{t+1,j}} [\hat{oldsymbol{ heta}}_t^ op \phi(oldsymbol{x})]$$

$$q_{t+1,j} \leftarrow \frac{\exp(\eta_t \sum_{s=1}^t \hat{r}_{s,j})}{\sum_{i=1}^M \exp(\eta_t \sum_{s=1}^t \hat{r}_{s,i})}$$

Find j^* while maximizing for the unknown r

Anytime Exponential weighting algorithm with Lasso reward estimates

Algorithm 1 ALEXP

Inputs: γ_t , η_t , λ_t for $t \ge 1$

for $t \ge 1$ do

Draw $m{x}_t \sim (1-\gamma_t) \sum_{j=1}^M q_{t,j} p_{t,j} + \gamma_t \mathsf{Unif}(\mathcal{X})$

Observe $y_t = r(\mathbf{x}_t) + \dot{\epsilon}_t$.

Append history $H_t = H_{t-1} \cup \{(\mathbf{x}_t, y_t)\}.$

Update agents $p_{t,j}$ for $j = 1, \dots, M$.

Calculate $\hat{\theta}_t \leftarrow \mathsf{Lasso}(H_t, \lambda_t)$ and estimate

$$\hat{r}_{t,j} \leftarrow \mathbb{E}_{oldsymbol{x} \sim p_{t+1,j}} [\hat{oldsymbol{ heta}}_t^ op \phi(oldsymbol{x})]$$

$$q_{t+1,j} \leftarrow \frac{\exp(\eta_t \sum_{s=1}^t \hat{r}_{s,j})}{\sum_{i=1}^M \exp(\eta_t \sum_{s=1}^t \hat{r}_{s,i})}$$

Find j^* while maximizing for the unknown r

Anytime Exponential weighting algorithm with Lasso reward estimates

Algorithm 1 ALEXP

Inputs: γ_t , η_t , λ_t for $t \ge 1$

for $t \ge 1$ do

Draw $\mathbf{x}_t \sim (1 - \gamma_t) \sum_{j=1}^{M} q_{t,j} p_{t,j} + \gamma_t \mathsf{Unif}(\mathcal{X})$

Observe $y_t = r(\mathbf{x}_t) + \epsilon_t$.

Append history $H_t = H_{t-1} \cup \{(\mathbf{x}_t, y_t)\}.$

Update agents $p_{t,j}$ for $j = 1, \dots, M$.

Calculate $\hat{\theta}_t \leftarrow \mathsf{Lasso}(H_t, \lambda_t)$ and estimate

$$\hat{r}_{t,j} \leftarrow \mathbb{E}_{oldsymbol{x} \sim p_{t+1,j}} [\hat{oldsymbol{ heta}}_t^ op \phi(oldsymbol{x})]$$

$$q_{t+1,j} \leftarrow \frac{\exp(\eta_t \sum_{s=1}^t \hat{r}_{s,j})}{\sum_{i=1}^M \exp(\eta_t \sum_{s=1}^t \hat{r}_{s,i})}$$

Putting it all together: ALExp

Find j^* while maximizing for the unknown r

Anytime Exponential weighting algorithm with Lasso reward estimates

Algorithm 1 ALEXP

Inputs: γ_t , η_t , λ_t for $t \geq 1$

for $t \ge 1$ do

Draw $m{x}_t \sim (1-\gamma_t) \sum_{j=1}^M q_{t,j} p_{t,j} + \gamma_t \mathsf{Unif}(\mathcal{X})$

Observe $y_t = r(\mathbf{x}_t) + \epsilon_t$.

Append history $H_t = H_{t-1} \cup \{(\mathbf{x}_t, y_t)\}.$

Update agents $p_{t,j}$ for j = 1, ..., M.

Calculate $\hat{\theta}_t \leftarrow \mathsf{Lasso}(H_t, \lambda_t)$ and estimate

$$\hat{r}_{t,j} \leftarrow \mathbb{E}_{oldsymbol{x} \sim p_{t+1,j}} [\hat{oldsymbol{ heta}}_t^ op \phi(oldsymbol{x})]$$

Update selection distribution

$$q_{t+1,j} \leftarrow \frac{\exp(\eta_t \sum_{s=1}^t \hat{r}_{s,j})}{\sum_{i=1}^M \exp(\eta_t \sum_{s=1}^t \hat{r}_{s,i})}$$

Theorem (Online Model Selection)

For appropriate choices of parameters, ALEXP satisfies

$$R(T) = \mathcal{O}\left(\sqrt{T\log^3 M} + T^{3/4}\sqrt{\log M}\right)$$

w.h.p. simultaneously for all $T \ge 1$.

[Solves the open problem of Agarwal et al. 2017 in the Linear case]

If I am running out of time:

If not...

Let's see how things evolve turing training...

Let's see how things evolve turing training...

Distribution over the models at time t=20

Let's see how things evolve turing training...

Distribution over the models at time t=20

Discards agents without having queried them

Let's see how things evolve turing training...

Distribution over the models at time t=20

Discards agents without having queried them

Number of visited agents Total number of agents

Rapidly recognizes top agents and whp selects among them

Thank you!

PK, Nicolas Emmenegger, AK, and Aldo Pacchiano. "Anytime Model Selection in Linear Bandits." NeurIPS, 2023.

Schur, Felix, PK, Jonas Rothfuss, and AK. "Lifelong bandit optimization: no prior and no regret." UAI, 2023.

Theorem (Regret - Informal)

For appropriate choices of $(\gamma_t, \lambda_t, \eta_t)$,

$$R(n) = \mathcal{O}\left(C(M, \delta, d)\left(\sqrt{n}\log M + n^{3/4}\right)\right)$$

with probability greater than $1 - \delta$, simultaneously for all $n \ge 1$.

$$C(M, \delta, d) = \mathcal{O}\left(\sqrt{d\log M/\delta + \sqrt{d\log M/\delta}}\right)$$

We consider 3 scenarios of increasing diffculty

1. Offline Data from similar tasks is available [KRK 2022]

2. Online data from similar tasks can be available [SKRK 2023]

3. No data from similar tasks is available [KPEK 2023]

Meta-Model Selection: Offline

When offline data from similar tasks is available,

$$y_{s,i} = r_s(m{x}_{s,i}) + arepsilon_{s,i}$$
 $i=1,\ldots,n$ and $s=1,\ldots,m$ $r_s(\cdot) = \sum_{j=1}^M \langle m{ heta}_s^{(j)}, m{\phi}_j(\cdot)
angle$ J is shared

Classical feature selection with Lasso

$$\hat{\boldsymbol{\theta}}^{(1)}, \dots, \hat{\boldsymbol{\theta}}^{(M)} = \arg\min \frac{1}{mn} \| \boldsymbol{y} - \sum_{j=1}^{M} \Phi_j \boldsymbol{\theta}^{(j)} \|_2^2 + \lambda \sum_{j=1}^{M} ||\boldsymbol{\theta}^{(j)}||_2$$

$$\hat{J} = \{j \in [M] \text{ s.t. } \hat{oldsymbol{ heta}}^{(j)} > \omega\}$$

Solving the online optimization problem using the learned model

Meta Model Selection: Lifelong

 $\forall s \geq 1: r_s \in \mathcal{H}$

Suppose the bandit task is of repetitive nature,

Optimizing for different molecular properties Recommending products to different costumers

Theorem (Lifelong Model Selection)

Under mild assumptions on the meta-data, and for an appropriate choice of λ , w.h.p.

- $-\hat{J}$ is a consistent estimator of J,
- The optimization algorithm which uses \hat{J} achieves oracle performance $R^*(T, m)$, as m grows.

the regret converges at a $\mathcal{O}(\log M/\sqrt{m})$ rate

$$R(T,m) = \sum_{s=1}^{m} \sum_{t=1}^{T} r_s(\boldsymbol{x}_s^{\star}) - r_s(\boldsymbol{x}_{s,t})$$

